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Abstract
Monitoring Is the extraction of dynamic information concerning a computational process,

as that process executes. Distributed systems, with their qualitative and quantitative Increases
in complexity, demand an intelligent monitor. The thesis of this dissertation is that monitoring

is fundamentally an information processing activity, and that the relational model, as applied

in relational databases, Is an appropriate formalization of this information. In this approach,

* the notions of entity (data structures, processes, hardware components, etc.) and relationship

(processes running on processors, messages in queues, etc.) are structured as a set of time-

varying relations. Queries on this collection of relations are translated Into retrieval and

computational -activities to be performed by the monitor.

Data collection is an important aspect of monitoring. After discussing a model of the

environment where data collection takes place, a flexible, strongly typed, efficient data

collection mechanism is presented. The impact of various features of the environment on this

mechanism is examined.

The user specifies the desired actions of the monitor with a high-level, non-procedural

query language called TOWe. This language is a superset of Quel, a relational database

query language, with additional syntax and semantics to incorporate time as an integral part

of the language. A formal semantics with several useful properties relating to monitoring is

presented. --------------__ ___ ___

Queries in TQuel must be converted into a procedural form in order to execute efficiently.

Update networks, designed for dynamic, incremental updating of derived relations, are

introduced as the target language for the TQuel translator. These structures are composed of

access nodes, which interface effectively with the system being monitored, and operator

nodes, which carry out the desired computations. The generation of update networks

involves several sophisticated techniques. Most of these techniques have their origins in

relational databases, and have been adapted to the monitoring domain.

In order to validate the relational approach, most of the components of the monitor were

implemented and instrumented. Measurements show that the monitor can generate and

process several hundred events per second, while at the same time presenting the conceptual

viewpoint of time-varying relations to the user.
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1. Approach

The title of this dissertation has two components. The first component. Monitoring Dis-
tributed Systems, crisply states the problem. The second component, A Relational Approach,
provides the solution. The central thesis of this work is that the relational model is an ap-
propriate formalization of the information processed by a distributed monitor. The first part of
this dissertation demarcates the problem and motivates the approach. The second part
defines the !angtuage. first informally and then rigorously, used to query the monitor. Part IIl
presents strato'yes for processing queries in this language, and examines an implementation
of the monitor. Several appendices provide details that would blur the focus of the main text.

The two chaipters in this part expand on the title. The first chapter will discuss in more
detail what ;:3 involved in monitoring distribu led systems, and why it is such an interesting anid
difficult problemn. T he second chapter introduces the relational model and lists the primary
issues involved in the application of this model to monitoring.

A



1'3

Chapter 1
The Problem

1.1. The Cause and the Result

The cause is hidden, but the result is known.

Ovid, from Metamorphoses IV

In the realm of computing, as in all analytic endeavors, one must first understand the
beh;avior before one can understand the underlying reasons for that behavior. As the com-
putational structures employed in programs become complex, computer system designers,
implementors, and users find it increasingly rare that they can agree with Ovid that "the cause
is hidden, but [at least] the result is known." Monitoring is a necessary first step in under-
standing a computational process, for it provides an indication of what hdppened, thus serv-
ing as a prerequisite to ascertaining why it happened.

The realization that monitoring is a difficult task, one that deserves study, has come only
recently to the computing community. When computing systems were simpler, it was possible
to understand adequately the system's behavior with rather unsophisticated monitoring tools

* .and (considerably more sophisticated) modeling techniques. Many aspects, such as charac-
terizing the control flow or determining execution times, were so straightforward as to not
even be considered issues. Times have changed, and many of these "non-issues" are now
so problematic that present monitoring systems often do not provide any solutions to them.

1.2. Definitions

*l The definition of monitoring employed in this dissertation is a rather general one: monitor-
ing is the extraction of dynamic information concerning a computational process, as that

4



4 I The Problem Monitoring Distributed Systems

process executes'.

A computational process is anything that can be said to compute2 . Examples include a
microprogram, a subroutine, a conventional process, a collection of processes, or even an
operating system. Computational processes vary in at least two ways concerning monitoring:
(1) the number of components to be monitored, from a single wire on a bus to the entire
system, and (2) the time frame in which the measurements take place, ranging from tens of
nanoseconds to months. The level of abstraction (the granularity) at which the monitoring
takes place has a substantial effect on the methods used to collect data.

Dynamic information may also be spread over a large range of temporal granularity, from
information concerning the sequence of microinstructions executed during a particular time
interval, to the average amount of time a routine executes, to some global statistic concerning
the execution of a whole series of programs. If the information to be collected is not dynamic,
there is no need to collect it as the process executes.

Defining a distributed system is difficult. Although John Shoch has several arguments to
support the contention that "therp is nothing different about 'distributed' computing" [Shoch
81 , he also presents several distinctions between distributed and non-distributed systems
(his widely-shared belief is that there is a difference). The two relevant to monitoring are

o Distributed systems are characterized by a lack of central control.

9 A quantitative difference in the number of system components (processors,
memory. addressing domains, etc.) leads to a qualitative difference3.

1There are at least two other definitions of monitor which should be mentioned. One use of the word monitor,
" iprevalent in the 1960's and early 1970's, is as a synonym for operating system or at least the user interface of an

operating system. The second refers to an arbiter of access to a data structure in order to ensure specified
invariants. usually relating to synchronization [Hoare 74). Both definitions emphasize the control, rather than the
observational, aspects of monitoring. The term mcnitor as used in this dissertation is the (usually software) agent
performing the monitoring.

Italics will be used for introducing new terms and for emphasis.

Boldface will be used for reserved words.
S.iALL CAPITALS will be used for names of relations.

3 At the same workshop [Liskov 81], Richard Watson added several related attributes: more heterogeneity,
distribution of state, and communication via messages. David Reed offered perhaps the best argument for

* .monitoring in his characterization of distributed systems: "In centralized systems, it has been possible so far for
single persons to understand the entire system (even of the size of MULTICS). This will not be possible for distributed
systems. How can we comprehend parts of the system without comprehending all of it?" Two other charac-
terizations of distritjted systems have been proposed which will be quite important in monitoring: (a) a completely
accurate global clock is not available, and (b) once a remote action has been requested, the requester cannot always
determine, in a bounded time, whether or not it has occurred. [Enslow 78] provides yet another definition.

U



Section 1.2 3

These two aspects conspire to make monitoring a distributed system a difficult (and thus
interesting) task. A precise definition of 'distributed' is not im0igortant; the intent of the title is
to include the above attributes in the problem domain.

The general definitions presented above allow concepts developed in this research to be
applied to several previously unrelated domains. This su-ction closes with a discussion of
representative utilizations of monitoring information.

One use of monitoring is to facilitate the debugging of complex programs. Debugging
proceeds in five stages [Model 79]4: (1) observe the behavior of a computer program; (2)
compare this behavior with the desired behavior; (3) analyze the differences; (4) devise
changes to the program to make its behavior conform more closely to the desired behavior;

* and (5) alter the program in accordance with these changes. Monitoring is concerned with
the first two stages in this process. The third and fourth stages are still the province of the
programmer (although the Programmer's Apprentice project [Shrobe 791 is making progress
in this area); the fifth stage is routinely accomplished using text editors, and could be
automated given the automation of the fourth step.

A second use of monitoring tools is in making efficient use of limited computing resources.
Ideally, optimization of resources wouId be done analytically, but in general a priori deter-

* mination of runtimne effici.'ncy is impossible. I hus it is necessary to 'Lune the application once
it is implemented. Tuning requires feedback on the program's efficiency, which is determined
from measurements on the application while it is running.

A third use of monitoring is to query the system, not for performance measures. but merely
for status information, such cis how far a computation has progressed, who is logged on the
system (the systemn status command of most timo-sharing systems), the state of certain files
(the catalogue or directory commands), or the quantity and nature of hardware and software
failures.

* *- And finally, monitoring information may also be used internally by the application program
for various purposes. For example, consider a program which varies the number of
processes dedicated to a particular function based on the request rate for that function.
Information concerning the hardware utilization and the number of Outstanding requests
could be used by the program to determine whether to start up more processes to handle the

4 current demand (if the utilization is low and the request rate high) [Rashid 80a, Wulf et al.
75a]. Monitoring information is also valuable for programs which must be reliable; the fact

4 Joseph Newcomer points out that this process is essentially the scientific method.

5 This tuning has been termed performance debugging: it's not enough just to show that a system works; you want
it to work well [Liskov 81).
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- that a processor (containing particular processes belonging to a program) has failed, for
". example, is important to the program if it must be able to recover from such failurese.

*: 1.3. The Impact of Complexity on Monitoring

The previous section indicted that monitoring is difficult because of the complexity and
decentralization of the process being monitored. The purpose of this section is to determine
how increased complexity impinges on the task of monitoring. The impact of decentralization
is reflected more in the specific algorithms and will be dealt with in later chapters. We will

* start by investigating the monitoring of the program counter, certainly an important aspect of
the dynamic state.

In the "good old days", a program consisted of a single program executing on a monolithic
. operating system on a single processor. The program counter could be traced or sampled.
*Tracing, which involves storing the information each time some event occurs, is usually done

at the procedure, statement or individual instruction level, with a concomitant increase in
• -overhev.d. At the beginning of each procedure (or statement or instruction), code is inserted
Sby a preprocessor to increment a counter or generate a timestamp. A postprocessor is often
• .used to correlate the data with the source text of the program.

Sampling involves storing information asynchronously with the execution of the program.
Usually sampling is initiated by a clock tick, by an operating system call, or by a separate
process. The information gathered by sampling is stochastic; for instance, it can indic.ate
what percentage of execution time takes place within an individual routine, but it cannot
*reli' bly determine how many times a routine was invoked. Sampling has the advantage that it
requires fewer resources, and thus perturbs the system to a smaller degree than tracing.

In the past two decades the programming environment has changed radically. In some
sophisticated systems being developed today, a program consists of many interRcting
processes running on many geographically distributed computers communicating over high

" bandwidth networks [Clark 78]. These systems differ quantitatively with systems of the past:
where there was one processor, there are now tens to hundreds; where there was one
process, there are now many per processor; where there were a few I/0 devices, there are

now complex communication media, sophisticated encoding formats, and powerful inter-
process communication protocols, all supported by large software components; where there
was a single cbntiguous address space, there are now many small, separately addressable
objects, each containing code or a specific data structure.

I 6Eric Rosen, in an article describing a particularly interesting inslability which occurred on the ARPANET,

concluded that "we need a better means of detecting that some high priority process in the Imp [a node on the
ARPANETI, despite all the saleguards we put in, is still consuming too many resources." (Rosen 811

I



Section 1.3 137

Returning to the example of monitoring the program counter, we must first determine what
the "program counter" means in a distributed system. One possibility is to use the program
counter of each of the processes making up the program of interest. For the single process
example, the routine name and statement number within that routine may be quite infor-

* mative; a printout of, say, fifty routine names and statement numbers is rather overwhelming.
* - This quantitative difference necessitates a qualitative change in the monitor, for there is one

aspect that remains unchanged: the user (and especially the information capacity of the user)
must still interpret the monitoring data.

The presence of the user has been implicit throughout this discussion. Fundamentally, the
user is not interested in the program counter at all; instead, the user wants an understanding
of the state of the execution as it evolves through time. This state manifests itself in many
forms: the changing values of the variables in the program, the input read by the program and
the output produced, the constantly changing program counter. All are valid components of
the program state, and each may be sufficient when monitoring a single process. Individually,
and in their raw form, however, they are woefully inadequate for monitoring distributed Sys-
tems, because there is simply too much information, most of it irrelevant. Instead, the monitor
must be able to express the system state (as well as other attributes of the system) in a form
useful to the user.

As an example, suppose the monitor could provide this description of the program state:

Process A is waiting on procass B to acknowledge the xxx rcquest: process Y is
sending process Z information concerning the object yyy; and process M has
completed.

There are several aspects to note in this example. The information the monitor displayed is
both less and more than a list of program counter's. The monitor had to understand that a
program counter in a certain range meant that process A was waiting for something, yet the
exact program counter was unimportant. Conceivably, the program counter could have been
completely different and the monitor would have displayed the c'arne information. In addition,
the monitor had to be able to lock inside the various queues and bufters maintained by the
communication mechanism in order to be able to state that a process is waiting on another
process to acknowledge a particular request. Names had to be associated with the various
processes, objects, and requests in order to produce an intelligible state description. And
finally, the monitor had to know that the user was interested in the current state in terms of

4 interprocess communication. Another perhaps just as useful state description is

Process A has used 75% of its resources, while processes X, Y and Z have used
only 20% of their resources.

4 The decentralization inherent in distributed systems also necessitates interpretation of the
monitoring data. The mention of several processes in the previous example implies a degree



8 1 The Problem Monitoring Distributed Systems

of logical decentralization; if those processes are on different processors, then there is also
physical decentralization. To present a global -view of the program state, the monitor must
integrate data collected at geographically distinct sites. Simply determining what information
to collect and where to acquire this information becomes a difficult task. Hence the quantita-
tive and decentralized aspects of the monitored system, coupled with the limitied information
handling capabilities of the user, demand an intelligent monitor. The next section will discuss
the organizing concepts for a monitor which can collect information from a variety of sources,
interpret this information, and present it in a series of high level views in a format comprehen-
sible to the user.

1.4. Knowledge Representation

In its most general form, the process of monitoring is concerned with retrieving information
from the monitored system and presenting this information in a derived form to the user.
Viewing the monitor as the proverbial black box, it is fundamentally an information processing
agent. As the previous sections have indicated, this activity is rather sophisticated. Looking
inside this black box, there is some form of know!edge representation t, direct the monitoring
activity. Thus, there are at least two ways to view a monitor abstractly: as a knowledge
representation system and as an information processing agent. As will be seen, both of these
views are fru'tlul. Tile re3t of this chapte' will investigate the knowl'adge representation issues;
chapter 2 will pursue the information processing :3snp*cts of monitoring.

In an examination of the discussion of a possible high-level program counter. one starts to
* "notice phrases such as "the monitor had to understand." In cne sense, the monitor can't

under ;iand; it is, alter all, only a computer program. However, computer programs are
remarkably versatile (c.f. Church's Thesis) and almost any type of desirable behavior can be
programmed with the correct selection of data structures and algorithms. Hence, the process
of "teaching the monitor" or "making the monitor understand" is transformed into the more
intellectually manageable task of deciding what data structures and algorithms to employ
within the monitor.

These data structures and algorithms encode the knowledge the monitor can apply to the
task at hand. Existing monitors perform little interpretation of the collected data, and thus use
rather ad hoc methods for determining what to monitor and how to perform the monitoring.
Two recent systems have addressed the monitoring of complex systems; it is useful to analyze
the character of knowledge each used to direct the data collection and interpretation.

Model's thesis [Model 79], one of the first to approach this topic systematically, stressed the
adoption of a uniform model of a complex activity for use in monitoring. His monitor was

* designed to be used with programs implemented in artificial intelligence languages such as
KRL, which are themselves implemented in Lisp. Despite the sophisticated control and data

V
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structures provided by these high level languages, most debugging is still done in the im-
plementation language. The complexity of programs written in these languages is seriously
limited by the lack of adequate debugging tools. Model argued that of the five stages present
in the debugging process (see section 1.2), monitoring has the most potential for improve-
ment at this time.

* The monitor collected events generated by the interpreter (the monitor had no control over
which events were collected). These events were related to the program's data and control
structures implicitly in the routines generating the events. However, some cross-referencing
was done, so that the monitor knew, for example, that some events caused other events. The
user could specify which events, as well as which fields in these events, were to be displayed.
The knowledge utilized by the monitor was wired into its code.

Gertner's thesis (Gertner 80] focussed on the flow of messages between processes in RIG
[Ball et a/. 76], a distributed system constructed at the University of Rochester. In his system,
Gertner described the computation using finite state automata, with the transitions being
events (usually messages sent between two processes in the system). Associated with each
message is a set of time-stamps relating to the activity involved in processing the message.
These timestamps allow the monitor to calculate processing intervals, message counts, over-
lapping periods, etc. A hierarchy of finite state automata can be defined, with elementary
transitions at one level composed of multiple transitions at a lower le:vel. This hierarchy allows
monitoring information to be presented at the appropriate levs~I of abstraction. Again, the
knowledge of how to derive information from the timestamps was implicit in the monitor's
code.

Unfortunately, these approaches are simply inadequate for distributed systems. In Model's
system, events capture only the notion of state transitions. TI', system state must be inferred
by the user. Modeling all activity in terms of finite state automata, as in Gertner's system,
while expressing to some degree the semantics of the periods between the events, is overly
restrictive. Sampling data (38 opposed to trace data) does not integrate easily into the
scheme. The proliferation of extraneous states is also a problem which results from a total
reliance on this model. Because of the restricted modules built into these systems, it is un-
clear how the systems could be extended to eliminate these problems.

In order to construct a monitor which can apply substantial knowledge concerning the
4 system being monitored, this knowledge must be organized in a coherent fashion. Thus a

formalism is needed to describe this knowledge. The formalism must, to some degree, en-
code the following knowledge:

* what information the monitor collects concerning the system;

* how new information can be acquired by the system;
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9 what dependencies exist between various components of this information;

* how the information relates to the data and control structures within the
programs, and to the data and control structures of the underlying operating

system; and

e what information the user wants to see.

There are also three basic notions that must be characterized by this formalism: entity,
relationship, and time. The monitor must understand that there are such things as proces-
sors. processes, memory, message ports, semaphores, etc. and that certain relationships
exist between these things, such as a process running on a processor. In Model's thesis, for

.* example, entities were the values of certain attributes, and the relationships were the events
"• themselves.

The third notion is that of time. The monitor must understand that facts are only true for a
certain period of time, and that entities and relationships are temporally bounded. For in-
stance, in Model's thesis, time was one of the fields in each event record, and queries could
specify which time period the user was interested in. Also, Model's monitor understood that

. events were sequential, and thus thdt some events were after others. However, the concept of
something h)eing true for a perod of time between two events is not represented within the
monitor, and thus the user could not request such information. Clearly, a mulliprocess

- monitor must have a better understanding of time.

The aim of this chapter has been to sufficiently refine the original problem statement into
one which can be attacked in concrete terms. This chapter has argued that monitoring is
concerned with knowledge representation and information processing. The next chapter will
investigate the information processing aspects of monitoring.

,

.4
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Chapter 2
The Relational Model

Viewed abstractly, a monitor collects, manipulates, stores, and displays information con-

cerning the dynamic state of a computational process. It is fundamentally an information
processing agent: the information describes temporal relationships between entities involved
in the computation. and the processing is quite sophisticated, due to the cognitive limitations

of the user. Previous work on monitoring has concentrated on techniques for collecting
monitoring data. As the previous chapter demonstrated, such a view is inadequate. The
approach taken in this thesis is the information must be structured in such a way that
manipulating it is straightforward. Also, there must be powerful algorithms which can satisfy
highly variable requests from the user.

A great deal of res arch has considered effective ways to process information. One of the

results of this research has been the relaticnal model [Codd 70]. The relational model
provides both a structuring of the information and operations on that information. Information
is stored in relations. A relation models a particular relation.hip between collections of en-
titles. Relations can be thought of as tables having a number of rows and columns. The rows
are called tuples and the columns domains. Each tuple of a relation models a particular
relationship between entities named in the domains of the tuple. For example, the relation

Employee (Name, Salary, Department)

might include the tuple (Huttinger, 44000, Commerce). New relations can be derived from*

existing ones, using one of several data manipulation languages developed for the relational
-model; these query languages are syntactically simple yet are remarkably powerful in their

expressiveness. One important aspect of some query languages is that they are declarative
rather than procedural: they specify what information is desired, rather than how this infor-

mation is to be derived. One possible query on the Employee relation would be to retrieve into

. a relation GivePerks (Name) all the employees making more than some minimum salary.

The central thesis of this work is that the relational model is an appropriate formalization of

the information processed by the monitor. The primary benefits include a simple, consistent

structure for the information and the existence of powerful declarative query languages. Pre-

vious uses of the model have been confined to static databases. The remainder of this chapter

discusses how the relational model is applied to the monitoring domain.
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2.1. Entities and Relationships

In order to use the relational model in monitoring, monitoring analogues must be specified
for each of the components of the model. We will be more formal in order to characterize the
application of the relational model to the monitoring domain precisely.

A relation is any subset of the Cartesian product of one or more domains [Ullman 82]. A
domain is simply a set of values. These values may be literal, such as integers or character
strings, or they may be names of entities. Entities are conceptual objects which exist in-

- dependently within the system being monitored. Entities may have a physical realization,
such as a processor, a disk, a line on a bus, or a word in memory. Alternatively, entities may
be virtual, such as a user job, an activity queue, or a capability list. Entities have names (both
internal and user-oriented) which allow them to be identified.

There are two types of relations in the monitor: primitive and derived relations. Both
represent relationships between entities. Each tuple of a relation indicates a particular
relationship between the entities named in the domains of the tuple. An example is the
RUNNINGON relation, which has two domains: a process and a processor. The tuple
(Process17, Processor5) in this relation represents a fact concerning Process17 and
PrncessorS, namely, that Process1 7 is running on Processor5.

Conceptually. each primitive relation is associated with a predicate that is true if the
relationship is satisfied for a given set of entities. This association provides a well-defined
semantics for the relation, since a particular tuple is in the relation if and only if the predicate
returns true when applied to that tuple. The predicate for the RUNNINGON relation might be
"the process is in the run-queue of the processor." Primitive relations may exist at any
monitoring granularity in the system. The sole requirement is the ability to specify the predi-
cate as some function of the system state accessiblo to the monitor.

Primitive relations are often just that. The user is probably not interested in the level of

detail present in the primitive relations; instead, the user desires more summary information
7 extracted from this detail. Query languages provide a powerful mechanism for specifying
- exactly the information the user wants to retrieve from the monitor concerning the system. In

this way, information not anticipated by the designer of the monitor is still available to the
user, provided the basic information is available to the monitor through the defined predi-
cates. An example of a derived relation is RUNNINGONPROCESSOR5, containing a Process
domain, which would contain exactly one tuple at any instant of time, the process which is

• currently running on Processor5.

Section 1.4 listed three notions to be characterized: entity, relationship, and time. The first
two have been are modeled directly in the relational model. The third is perhaps the most
fundamental, for without the system state changing as time progresses, there is no need to
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monitor the system. Hence, it is important that the notion of time be consistently represented
within the monitor.

2.2. Time

Time goes, you say? Ah no!

Alas. Time stays, we go.

Austin Dobson, in "The Paradox of Time"

Time by itself does not exist; but from things themselves there exists a sense of what has

already taken place, what is now going on, and what is to ensue. It must not be claimed that

anyone can sense time by itself apart from the movement of things or their restful immobility.

--Lucretius, in De rerum natura, Book I

Within the monitor, relations are differentiated temporally: there are event relations and

period relations. A tuple in a period relation specifies a relationship valid during the time
interval [t,, t.]. The RUNNINCON relation described earlier is a period relation, since each
particu!ar tuple is true foi a finite stretch of time. Since the relation is a collection of tuples, it
is also a collection of periods.

A tup!e in an event relation describes a change in the state of the system which occurred at
a particular instant of time. Events delimit periods: a given event causes one or more periods
to start; other event(s) cause the period(s) to stop. An examnple is the STAPTRUNNING event
relation, with processor and process domains. The tuple (Processi?, Processor5) in this
relation represents the instantaneous event of Process17 starting to run on Processor5. This

event caused a similar tuple in the RUNNINGON period relation to be true.

Event and period relations are complete, in that a succession of system states at a par-

ticular level of abstraction (the monitoring granularity) can be determined by the appropriate
event or period relations. For example, either the RUNNINGON or the STANTRUNNING relations
are sufficient to specify when each process was running on each processor. Since they are
complete, they are also duals, in that the tuples in a period relation can be determined given

4 the appropriate event relations, and an event relation can be generated given the appropriate
period relations. Hence, knowing which events occurred provides the periods which were
started or stopped by those events, and knowing when the periods started and stopped
provides the events that occurred. Although this duality depends on a number of assump-
tions which are often difficult to satisfy in practice, it is important because it provides a way to
accommodate both sampling data, related to period relations, in that successive samples
provide the successive tuples of a period relation and tracing data, related to event relations,
which are generated by a stream of events.
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Because relations can be derived from other relations and relations represent events and
periods, it is possible to specify derived events and periods. The query language must be
augmented with additional semantics to permit the specification of such temporal relation-
ships as simultaneity and consecutivity. Figure 2-1 illustrates how derivation and duality

interact.

2.3. Summary

This chapter has provided the fundamental thesis for this research:

The information collected by the monitor should be presented to the user as a

collection of time-varying relations which can be manipulated by a temporal query
language.

This contention was suoported by considerations of programming environment complexity,
cognitive limitations of the user, and the underlying functionality of the monitor. There
remains one problem: how can the relational view as presented to the user be supported

effectively by the monitor? In this context, effectiveness implies powerful, user-friendly, ef-
.- ficient and system- independent, all interrelated attributes. Relations are structurally simple,
- and the query languages are straightforward. The concept of a dynamic database of infor-

mation on the behavior of the system is easy to comptehend and use. The user still specifies
what inforrnation is desired; the monitor must apply all cf its knowledge to determine how to
supply this information: what information to collect and what manipulations on this infor-
mation are necessary, and it must do this in an efficient manner. The goal is to construct a

• "monitor which can suppcrt the relational model in its full generality for the user, yet perform

the actual monitoring as effectively as a manually constructed monitor tailored to the specific

task.

This dissertation is loosely organized around a sequence of problem and result statements.
Implicit in each problem statement are the results generated by preceding statements, be-

*cause one benefit of acquired knowledge is the ability to ask further, more precise questions.
Given the framework presented so far, it is possible to ask several general questions:

Problem: How may traditional query languages be extended for use in monitor-

ing?

Problem: Is it possible to provide effective data collection mechanisms?
Problem: How can the dynamic incremental updating of temporal relations be

implemented effectively?

Problem: How can knowledge be used to direct the processing of user queries?

* The following chapters will present solutions to all of these problems.
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II. A Temporal Query Language

The two chapters in this part define the language used to query the monitoring data base.
An informal definition is given first, emphasizing the way in which the constructs of the lan-

guage may be used to make meaningful queries involving time. The second chapter then
provides a formal semantics for this language. In a first reading, the reader is encouraged to
skip most of chapter 4, reading only the introduction to the tuple calculus and the summary
(sections 4.1 and 4.6).

PREVIOUS PAGE

IS BLANK
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Chapter 3
An Informal Definition

This chapter describes a language for querying a temporal data base such as the one

supported by the monitor. The user indirectly specifies the actions to be taken by the monitor

by describing the desired information in this language. As a result of processing the query,
the correct information is collected, processed, and presented to the user. There are two
prerequisites for this scenario to be realized: the user's query must contain a complete

specification of the desired information (with as little irrelevant detail as possible), and the
monitor must be able to take this abstract specification and "do the right things" with it. This

chapter will deal with the specification itself, the query language and the next chapter will
present a formal semantics for the language.

The language is a strict superset of Quel [Held et a!. 75], called Temporal QUEry Language,

or TQtiel. Quel, used in the Ingres relational database system [Stonebraker et al. 76], is a
relational tuple calculus language with 16 basic statement types: Append, Copy, Create,

Define, Delete, Destroy, Help, Index, Integrity, Modify, Permit, Print, Range,

Retrieve, Save, View. These statement types, presented in detail in [HpId et al. 75], support

* the creation and destruction of databases and relations, storage structure modification, bulk

copy of data, consistency, integrity, and concurrency control, retrieval of information, and
miscellaneous operations. Since the task of monitoring concerns primarily the retrieval of

information, only changes to the retrieve statement were investigated. A full implementation

of a monitor would also have to make modifications to several of the other statement types.
Since TQuel is a strict superset of Quel, every acceptable Quel retrieve statement is also an

acceptable TQuel statement. The complete syntax for the Touel retrieve statement is given
in Appendix A.

TQuel augments the retrieve statement with additional syntax, and provides a more cor-
4 prehensive semantics by treating time as an integral part of the database. Before inves-

tigating these changes, it is instructive to examine the original Quel retrieve statement. The

Quel examples all concern the following relation:

Employee (Name, Dept, Salary, Manager, Age)

!-
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3.1. The Quel Retrieve Statement

Informallyi the Quel retrieve statement selects a subset of the tuples in one or more

relations, extracts one or more domains from the tuples in this subset, and combines the

domains into result tuples. The retrieve statement works in conjunction with the range

statement (the syntax is presented in standard BNF, with e designating the empty string and

.nonterminals in brackets):

<range statement> range of <tuple variable> is <relation>
<tuple variable> :: <name>
<relation> ::= <name>

The statement

range oF E is Employee

specifies that the <tuple variable> E will be represent the tuples of the relation EMPLOYEE on

any subsequent retrieve statements, until E is redefined by another range statement. The

expressions appearing in the retrieve statement contain constants and previously defined

<tuple variable>s.

The retrieve statement creates a new relation (perhaps only temporarily, if no <relation> is

provided) with the domains named in the <target list> whose tuples satisfy the <boolean

expression>. For example, to compute the salary divided by Age - 18 for each employee in the
Toy department:

retrieve into T (Comp = E.Salary / (E.Age - 18))
where E.Oept = "Toy"

resu't in a new relation T which has a single domain Comp calculated for each qualifying

tuple. The <target list>

(Comp = E.Salary / (E.Age - 18))

specifies the domains of the new relation. In this case, T will contain one domain called

Comp, computed from the Salary and Age domains of the tuples in EMPLOYEE. The <where

clause>

where E.Dept = "Toy"

specifies which tuples will contribute toward the new relation. The retrieve statement thus

consists of a domain specification component (the <target list>) and a tuple selection com-

ponent (the <where clause>). Each may be defaulted; the (target list> to all the domains in one

of the underlying relations; and the <where clause> to

where true

The complete syntax is as follows:

6'

V"
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<retrieve statement> :< (retrieve head> <where clause>
<retrieve head> ::= retrieve <into> <target list>
<into> ::= e I unique I <relation> into <relation>
<target list> ::= ( <tuple variable>. all )I ( <t-list> )
<t-list> ::= (t-elem> I <t-list> , <t-elem>
<t-elem> <name> <is> <expression>
<is> :: IS J
<where clause> ::= I where <Boolean expression>
<relation> ::< name>

3.2. Adding Time to Quel

While ladies draw their stockings on,
The ladies they were are up and gone.

--Ogden Nash, in "Time Marches On"

Since TQuel must be able to express queries on temporal relations, the retrieve statement
was augmented with additional semantics involving time. As introduced in chapter 2, tern-
poral relations are collections of tuples, each representing either an event or a period. Hence,
each <tuple variable> appearing in a retrieve statement will constitute both an assignment of
values to domains, and a time element. The retrieve statement thus becomes a way to
specify the combination of one or more periods and/or events into a resulting period or event.
This characterization, as we will see, has far-reaching consequences on the syntax, seman-

tics. and processing of the TQuel retrieve statement.

There is a fundamental decision to be made when adding time: should the time domain be
explicit, that is, directly manipulatable by the user in the <target list> and <where clause>, or
implicit, manipulatable only through additional clauses in the language. TQuel adopts the
latter approach, for several reasons.

One reason TQuel provides separate clauses for the time domain is that the alternative,
allowing the user to manipulate time as simply another domain, attempts to ignore an impor.
tant aspect of the database. Time is fundamental in a temporal database and significantly
impacts the processing of such a database (this aspect will be considered in detail in sub-

sequent chapters). Ultimately, the fact that a tuple has a domain specifying the time it was
* valid determines to a major extent the processing of that tuple. To the database management

system (i.e., the monitor), the time domain is much more important than the other domains
found in the tuple.

A second reason involves the operations allowed on the proposed time domain. The state-
* ment (in an imaginary query language)

0
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retrieve .......
where A.time < B.tme

implicitly states that the tuple represented by the <tuple variable> A was generated before the
tuple represented by B. Not only must the monitor discover this fact, but so must the user. A
perhaps more satisfying syntax is

retrieve .......
when A before B

The semantics in the second case is clearer both to the monitor and the user.

Finally, the monitor should permit as much flexibility as possible, without enforcing inane
"-'- rules to disallow semantically incorrect queries. For example, the query
] retrieve (D = A.D, Time - A.Time)

wh'ere B.Time < (A.Tirne or C.Ttme)

might have the semantics that B must be followed by A or C, and that the time of the result

tuple is to be the same as the underlying tuple, represented by the <tuple variable>

A. However, another, quite similar, query:
retrieve (D = A.D, Time = A.Time or C.Time)

does not make sense, although the types still match. The problem is that the time domain is
being used in several different ways, yet the same syntax is being applied in all cases. In
TQuel, the first statement (in an appropriate syntax) is allowed, while the second is not.

. 3.3. The TQuel Retrieve Statement

*: For the reasons expressed above, the approach taken with TOuel was to make the time
domain an implicit one, and to extend the retrieve statement with clauses dealing with this

implicit domain. As discussed earlier, the Quel retrieve statement consists of a domain
specification component and a tuple selection component. TQuel augments the statement

with two analogous components: the temporal delimiter component and the temporal selec-
tion component:

<retrieve statement> <retrieve head> <retrieve tail>
<retrieve tail> : <selection> <temporal delimiter>
<selection> < (where clause> <temporal selection>

The only other change is that the <target list> may be empty, specifying an event or period
relation with no explicit domains.

In TQuel, each relation represents a collection of events or periods; for simplicity, let us
* restrict the discussion to periods. Each tuple (period) of the resulting relation consists of

domains from the tuples (periods) of the underlying <tuple variable>s. The combinations of
the underlying tuples which are accessible is determined by the selection component (on the
explicit domains) and the temporal selection component (on the implicit time domains). The
domains of the result tuple are determined from the explicit domains by the domain specifica-
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tion component and the implicit time domain from the time domains of the underlying tuples
by the temporal delimiter component. Thus, for each component of the retrieve statement
concerning the explicit domains, there is an analogous component for the implicit time
domain.

Before going into the details, an example is appropriate. The following relation will be used:
RunningOn (Process, Processor)

RUNNINGON is a period relation with two domains: a processor and a process. Each tuple in
this relation describes a period of time when a particular process was running on a particular
processor. The query7:

range of R is RunningOn
retrieve StartRunning (R.Process)
where R.Processor = Processori
when "3:00pm" ; R
at R.start

derives an event relation called STARTRUNNING with one domain: a process. Each tuple in this
relation describes an instant of time when a particular process started running on Processor1.
If the processor was multiplexed among many processes, there could be many tuples in
STARTRUNNING. one for each time the processes was restarted. Only events occurring after
3:00pr are included in this relation (the expression a ;/ specifies that a precedes .38). In this
query, the selection component consists of the <where clause> <when clause>, and the tem-
poral delimiter component consists of tWe <at clause>.

3.3.1. TQuel Expressions

Before we discuss the additional components, we should consider the format of expres-
sions. Standard Quel domains may be of one of the following types: fixed length character
string, integer (1, 2, and 4 bytes long), and floating point (4 and 8 bytes long). TQuel aug-
ments these domain types with a temporal type, whose value is a linear function of time. A
temporal domain is initially created using the duration function, which requires a <tuple
variable> as art argument, and whose value is the length of time the tuple is valid. A temporal
domain may be operated on by any arithmetic operator, as long as the result is either one of
the standard types or is itself a ratio of two linear functions of time (see section 6.3).

Quel allows the standard arithmetic, string, trigonometric, and type conversion operators to
be performed on domains. Quel also includes a few aggregate operators (count, average,

7 Short examples of the various components of the TQuel retrieve statement will appear throughout this chapter.
A complete example may be found in section 3.7.

8 This somewhat unusual syntax was taken from path expressions (see section 3.3.2). See (Shaw 801 for a review

of non-procedural notations based on regular expressions.
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sum, minimum, and maximum) which return the same value for a collection (aggregate) of
tuples. TQuel augments these operators with temporal semantics (see section 3.6).

One way to apply operations to the implicit time domain is to redefine the semantics of the
operators defined on the explicit domains. For example, addition might mean "later", sub.
traction "earlier", and equality "at the same time". This approach may be characterized as
arbitrarily associating syntax (algebraic operators) and semantics (later, earlier, etc.). This
approach was not adopted in TQuel because it encourages quite confusing constructions,
and also suffers from most of the drawbacks mentioned earlier of making time an explicit
domain.

The approach taken in TQuel was to define three types of expressions: standard expres-
*~i sions, <temporal expression>s, and <event expression>s. <temporal expression>s evaluate to

a Boolean value indicating whether the ordering specified by the expression was satisfied.
The clause

when "3:00pm" ; R

includes a <temporal expression> specifying that two events be sequenced in time. <event
expression>s evaluate to a timestamp indicating a particular event. The clause.

at R start

i contains a paril ularly simple <event expression>. The use of <temporal expression> and
<event expression> in the TQuel retrieve statement will be discussed after examining the
syntax and informal semantics of these expressions.

* 3.3.2. Temporal Expressions

There are several straightforward examples of <temporal expression>s: a (tuple variable>,
the ticking of a clock, a particular clock time. Since events can be derived from periods (see
section 2.1), the start and stop events of a period (the start and stop events of an event are
simply the event itself) are included, as are string and integer constants. The string constant
specifies a wall clock time (such as "3:00pm"); and the integer specifies the number of time
units (such as milliseconds) since the start of the session with the monitor. Both are examples
of temporal constants. The ticking of a clock is accommodated by a predefined event relation
CLOCK, which contains a tuple designating every "tick".

The above <temporal expression>s all define events, which do not specify interesting order-
* ings. Any nontrivial (temporal expression> must be composed of more than one event or

period. The most straightforward is a sequence of two events, defining a simple ordering of
the events. TQuel allows more general expressions: an ordering may be specified as a

* •regular expression on the participating tuples (e.g., the <tuple variable>s). The syntax is that
of path expressions, which are regular expressions augmented with parallel operators
[Habermann 75, Andler 79]. Path expressions, as originally defined, specify constraints on

S
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the dynamic behavior of the program. In TOuel, path expressions are used in two separate

ways in <temporal expression> and <event expression>. Indeed, the original motivation does
not apply, since the operations have been performed and the event records generated before
the processing of those records commences. Path expressions are used in (temporal

* expression>s to specify the relative ordering of the tuples participating in the query. The
S- <temporal expression>

"3:00pm" ; R

appeared in the above example. The other application of path expressions Is in <event

expression>s, where they are used to select an event. <event expression>s, such as R.start
appearing above, will be discussed later.

The following is the syntax for (temporal expression>s:

<t-exp> <element>
- <t-exp> , <t-exp>
<t-exp> ; <t-exp>
<t-exp> "I" <t-exp>
<t-exp> time
<t-exp> start
<t-exp> stop
( <t-exp> )

<element> <tuple variable>
<string>
<integer>

The syntax of ".start" and ". stop" is designed to exploit the user's mental image of access-
ing the implicit time domain of the result of the expression (sing a syntax reminiscent of
record accessing). The same observation holds true for ". time". The informal semantics are

.start indicates the starting event;

.stop indicates the stopping event;

az ; /8 specifies that f8 must follow a in sequence;

a lp8 specifies that at least one of the two expressions must be true; and

a,# specifies that the two executions must overlap in time.

4 Examples will appear shortly.

4'
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3.3.3. Event Expressions

<event expression>s are quite similar to (temporal expression>s. The major difference is
the selection operator, which is found in <temporal expression>s but not in (event
expression>s. The syntax is therefore almost identical to that of (temporal expression>s:

<event expression> ::a <element>
<event expression) time
<event expression> . start
<event expression> . stop

,<event expression> < (event expression>
<event expression> , <event expression>
( (event expression> )

The informal semantics of <event expressions are

start selects the start event;

-stop selects the stop event;

a ; ,8 forms a period starting when a starts and stopping when ,P stops; and

a 4 ,3 forms a period starting when the second period starts and stopping when
the first period stops, thereby determining the interval of time when both a
and P3 were valid.

To illustrate the difference between the two types of expressions, the (temporal

expression>
(A ; B)

may be used to specify the condition that the tuple associated with A occurred before that
associated with B. To select the tuple which occurred first, the fclowing <event expression>

,. would be used:
(A , B).start

This expression specifies that the tuples (events) associated with A and B occur in parallel,
and that we are interested in the one occurring first.
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7. 3.4. The Temporal Selection Component

The (temporal expression> and <event expression> are used in the additional constructs of

the TOuel retrieve statement. The temporal selection component, the temporal analogue to
the <where clause>, specifies the desired temporal ordering of underlying tuples participating
in the derivation:

<temporal selection> - e I when <tbool-exp>
<tbool-exp> ::- <t-exp>

<I ( tbool-exp> )
I <tbool-exp> and <tbool-exp>
I tbool-exp> or <tbool-exp>
I not <tbool-exp>

The <when clause> selects tuples based on their ordering in time, rather than on the values of
their domains, as the <where clause> does. The <when clause> includes a logical expression,
which in turn contains <temporal expression>s. It is satisfied if the tuples associated with the
<tuple variable)s found in the clause do in fact satisfy the <temporal expression>. For ex-
ample,

when A ; (B I C)

specifies that the tuple associated with A must have been generated before those associated
with B or C. Four tuple orders will be allowed (abc, acb, bac, cab)9; the other two possible
orders (cba, bca) will be rejected and the particular combinations of tuples exhibiting a dis-
allowed order will not participate in the query1° . The <when clause> and <where clause> work
in concert to determine which tuples associated with the <tuple variable>s appearing in the
query will be used to derive a result tuple.

3.5. The Temporal Delimiter Component

Time that takes survey of all the world

Must have a stop.

--Shakespeare, in Henry IV, Part 1

The temporal delimiter component specifies the value of the implicit time domain, just as
the domain specification component identifies the values of the explicit domains. Two
clauses, a <start clause> and a <stop clause>, are used when the result is a period relation; the
<at clause> is used when the result is an event relation. The syntax is shown below:

9 Here, the convention being used is that a represents a tuple associated with the <tuple variable> A, and similarly
-4 with b and c.

10Note that tuples must be supplied by all <tuple variable>s; hence, orders such as ab are not considered.

4
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<temporal delimiter> <period delimiter> I <at clause>
<period delimiter> <start clause> <stop clause>
<start clause> ::z start <event expression>
<stop clause> e stop <event expression)

*TI <at clause> .:= at <event expression>

. Using the relation defined earlier,

RunningOn (Processor, Process)

the queries

range of R is RunningOn
retrieve StartRunning (R.all)
at R.start
retrieve StopRunning (R.all)
at R.stop

specify the events which temporally delimit the RUNNINGON relation. The query

range of C is Clock(100)
retrieve SampledRunning (R.all)
at C

specifies an event relation with tuples at every 100 milliseconds designating which processes
were running on which processors at that time. The tuples in the RUNNINGON relation valid at
the time the clock ticks are placed in the SAMPLEDRUNNING relation. The monitor will implement
this derived relation by sampling each processor every 100 milliseconds to determine which

*. process is currently running.

3.6. Aggregate Operators

Quel uses the aggregate operators count, sum, avg, min, max, and any (the value is 1 if
any tuples satisfy the qualification) to aggregate a computed expression over a set of tuples.
The argument of such an operator can be either a single <tuple variable> or any expression
involving constants, arithmetic operators, or domains of a single relation. The following query
determines the total payroll (using the EMPLOYEE relation introduced at the beginning of this
chapter):

range of E is Employee
retrieve (PayRoll = Sum(E.Salary))

The argument of the aggregate operator can be qualified; this query determines how many

employees work in the toy department:
retrieve (Number=Count(E.Name where E.Dept = "Toy"))

Both queries are examples of simple aggregates, which evaluate to a single scalar value.
Aggregate functions, on the other hand, partition the set of qualifying tuples into groups, each
of which is assigned a value for the expression. The query

retrieve (E.Name, MS = Min(E.Salary by E.Dept))
4 returns a list of employees, each with the minimum salary of his or her department. Opera-

tionally, avg partitions the tuples into groups by department, then assigns a value (the
average salary) to the tuples in the group. Each tuple receives the same value.

4
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Aggregate operators are more complicated in TOuel, due to the time-varying behavior of
relations. Aggregate operators on event relations are cumulative, in that they take all
previously valid tuples into account in their computation. For instance, the Count operator
on an event relation would count the number of events which had occurred. Figure 3-1a
depicts a series of events. Figure 3-1 b show the periods and their values for the query

retrieve (Value = Count(E))

As another example, the following query implements a simple clock:
range of C is Clock(1000)
retrieve (ClockTime = Count(C))

Since the clock "ticks" every second (1000 msec), there would be an event qenerated every
second. The ClockTime domain would record the number of seconds that had passed before
the current "tick".

There are two versions of aggregates on period relations, the cumulative and instantaneous
versions. Since the instantaneous version is the default for aggregates applied to periods; the
CountC operator is used to indicate the cumulative version, which works exactly as it does on
event relations. The result of the (instantaneous) Count operator will in general go up and
down as the periods come and go, while the value of the CountC operator must monotoni-
cally increase over time. In Figure 3-1c, a collection of periods is shown. Figure 3-1d shows
the result of the Count operator, whereas Figure 3-le shows the result of the CountC
operator. Note that the derived periods of the CountC operator only involve the leading edge
of the underlying periods, while those of the Count operator involve both edges.

The avgc operator is slightly different, since it takes the length of time the tuple was valid
into account when computing the average. The value of the argument of the avgc operator is
weighted by the duration of the tuple, and intervening periods (when no tuple is valid) are
treated as tuples with a value of 0 for the argument.

Note that the presence of a, aggregate operator in a retrieve statement automatically
implies that the resulting relation will be a period relation. The <at clause> may be used to

specify that an event relation is to be derived. The conversion from single event relations to
period relations is handled by the ExtendC aggregate operator, which extends an event to a
period stretching to the next event. It is cumulative since the derived period depends on the
preceding event.
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Figure 3-1: Instantaneous versus Cumulative Count

3.7. An Example

To illustrate the actions of the monitor, we will examine how a particular program running
on Cm* is monitored. The program solves Laplace's partial differential equation with given
boundary conditions (Dirichlet's problem) by the method of finite differences. The equation

a 2u(x.y) + a2 u(xy)
a x2  a y2

is solved for points on an m by n rectangular grid, where only the values at the outer edges of

6
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the grid are given. The solution is found iteratively. On each iteration, the new value of each
element is set to the arithmetic average of the values of its four adjacent neighbors.

Several processes and several processors work on the grid simultaneously. The grid is
partitioned into regions, with one process responsible for each region. The configuration is
shown in Figure 3-2. Note that the solvers require access to adjacent regions to derive new
values for points on the boundary of their region.

There are many possible ways to synchronize the processes, the most efficient being the
purely asynchronous method. The processes are only synchronized at the beginning of the
computation. This means that, due to differences in the scheduling and in the data that each
process is working on, some processes may perform many more iterations than others.

The proposed experiment will investigate the relative synchrony of two of the processes
operating on adjacent regions. If one of the processes (call it P1 ) gets behind the other
process (P2), then the second process will be using older values for the points on the bound-
ary, possibly slowing the convergence for the entire grid. This experiment will focus on those
periods of time when P1 gets significantly behind P2 (i.e., more than one iteration).

One sensor is needed, a traced event sensor which generates an event record each time
the solver process begins a new iteration. Since this sensor, called Iteration, is traced, the
events are automatically converted into a primitive period relation (also called ITERATION) by
the monitor. Thus, the primitive period Iteration is defined, with two domains: Process, the
name of the process generating the event record, and IterNum, an integer designating the
iteration which has just begun. Derived relations can now be specified using the Iteration
relation.

A period begins whenever the IterNum domain changes, with the tuples partitioned into
groups according to the Process domain. The query

range of A is Iteration
range of B is Iteration
retrieve AOverB (Diff = B.IterNum - A.IterNum)
where A.Process = P1 and B.Process = P2

and A.IterNum > B.IterNum + I

finds the periods of time in which P2 is behind PI by at least 2 iterations. The start and stop
clause>s default to the most conservative situation (see section 4.5.2), that is, the result tuple
will be valid only as long as both underlying tuples were valid.

The periods in the AOVERB relation represent the times where process P2 was significantly
behind process P1 . To determine the percentage of time this was the case, use the query

range of AB is AOverB
retrieve Over (Percent=AvgC(AB) ' 100)

The aggregate operator used here is the cumulative average operator. Since a single (tuple
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.:Solver Region

Figure 3-2: Configuration of the PDE task force

variable> appears as an argument to the avgc operator, the result will range from 0 (no tuples
ever occurred) to 1 (tuples are always present).

And finiy, to determine the times P2 caught up with P1.

* .retrieve Catch
where A.Process = P1 and B.Process P2

and A.IterNum = B.IterNum
when A.Start ; B.Start
at B.start

Since no target domains were specified, the CATCH relation will only contain the implicit time

domain. The <when clause> says that P2 started a new iteration during an iteration of P1.

0 Since the IterNum is always increasing, P2 (B) can catch up with P1 only in this manner. The

alternative,

when B.start ; A.start

specifies that the iteration numbers were equal after P1 has started a new iteration, implying

* gthat P2 was already ahead. The <at clause> indicates the exact time that P2 does catch up.

Of course, P1 will probably start its next iteration shortly, leaving P2 behind once again.

Finally, to view the results of these derivations,

0@ display Over, Catch

.
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3.8. Summary

Date lists eight criteria to be applied in the evaluation of conceptual views of data which are
also helpful in evaluating query languages [Date 76]. It is useful to examine TQuel in relation
to these criteria, and, more specifically, in relation to the language from which it was derived,
Quel.

1. The number of basic constructs should be small.

The Quel retrieve statement consists of a domain specification component (the

(target list>) and a tuple selection component (the <where clause>). The TQuel

retrieve statement consists of precisely the same components, so at this level,
the number of basic components has remained small.

At the syntactic level, TQuel augments the (target list> and <where clause> with
(a) the <at clause>, <start clause>, and <stop clause> (temporal analogues of the
(target list>) and (b) the <when clause> (the temporal analogue fo the <where
clause>). Hence. the syntax is more complex, but not overly so.

2. Distinct concepts should be cleanly separated.

The most important example is the distinction between the temporal delimiter
component and the temporal selection component. Although the expressions
found in these two components may be quite similar, the very dissimilar seman-
tics is made clear through the use of separate reserved words (start, stop, and
at versus when).

3. Symmetry should be preserved.

Symmetry should arise between the explicit domains and the implicit temporal
domains, as well as between the start and stop domains. In the formt , ase, both
sets of domains are associated with a domain specification component and a
tuple selection component. In the latter case, TQuel associates quite similar
syntax and semantics with the start and stop domains.

4. Redundancy should be controlled.

This objective is concerned more with the information being stored in the,
database than with the query language.
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5. The number of operator types should be small.

TQuel adds only a few temporal operators (three binary and three unary) and one

aggregate operator. Much of the language design involved incorporating time
into the semantics of the existing operators.

6. Very high-level operators should be available.

The sequence (;), alternation (I), and concurrency (,) operators are high-level in

that they indicate which properties the resulting tuples should have, rather than

specifying how the properties are to be obtained.

7. Behavior must be totally predictable and should accord with the user s intuitive

expectations.

This objective is dealt with in detail in the next chapter, especially with regard to

aggregates, defaults, and semantics when the time domain is fixed.

8. The language should be founded conceptually on a solid base of theory.

The presence of a complete formal semantics for the TQuel retrieve statement,

as presented in the next chapter, satisfies this objective.

In summary, the Quel language has been augmented syntactically and semantically to
incorporate time. The syntactic changes included four new keywords, when, start, stop, at;
several new functions; and two new types of expressions, <temporal expression>s and <event
expression>s. Semantic changes included a new domain type, temporal; additional selection
and specification components; and additional semantics for aggregate operators. Examples
indicate that TQuel allows complex queries to be specified in a straightforward manner with
little irrelevant detail. Hence, TQuel is an existence proof that

Result: Traditional query languages can be augmented syntactically and

semantically to include time.

This introduces a new issue. to be addressed in the next chapter:
Problem: How can the semantics of TQuel be formalized?
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Chapter 4
Semantics of the TQuel Retrieve Statement

The story is told of the Russian poet Samuel Marshak that when he was first in London, and

did not know English very well, he went up to a man in the street and asked, 'Please, what is
time?' The man looked very surprised and replied, 'But that's a philosophical question. Why
ask me?'

--G. J. Whitrow, in The Nature of Time

It is impossible to meditate on time ... without an overwhelming emotion of the limitations of
* human intelligence.

--A. N. Whitehead

4.1. Tuple Calculus

The semantics of the TQuel retrieve statement is an extension of that of the standard Quel
retrieve statement. The semantics of both will be given as tuple calculus expressions, which
are of the form

{ t0)I ' (t)}

where the variable t denotes a tuple of some fixed length i, and 4(t) is a first order proposi-
tional calculus expression containing only one free tuple variable t. 4(t) defines the tuples
contained in the relation specified by the retrieve statement. The atoms of P are of three
types:

* R(s), where R is a relation name and s is a tuple variable, asserting that s is a tuple
in relation R;

* s[i] 8 u[j], where s and u are tuple variables and 0 is an arithmetic comparison

operator, asserting that the ithcomponent of s stands in relation 8 to the

jthcomponent of u; and

.1
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* s[i] 0 a and a 0 s[i], where a is a constant, having a similar meaning.

For example, the intersection of R and S (both of arity i) is expressed by the calculus expres-
sion

{ t('I R(t) A S(t))

A more detailed presentation of tuple calculus can be found in [Ullman 82].

The Quel statement

range of t1 is RI

range of tk is Rk
retrieve ( ti . D1  tip Dr)
where

is equivalent to the tuple calculus statement

{ u(r) (3t,) ... (3tk) (R, (t,) A ... A Rk (tr)

A u[1] = ti, [ij]A ... A u[r] = tliri

bAO.

which states that ti is in Ri, that the result tuple u is composed of r particular components of
the ti's, that Dm is the j. th attribute of the relation Rim, and that the condition 4, (modified
trivially for domain names and some Quel syntax conventions) holds for u. In the first example
given in the previous chapter (using the EMPLOYEE (Name, Dept, Salary, Manager, Age)

. _relation),

range of E is Employee
retrieve into T (Comp = E.Salary I (E.Age - 18))
where E.Dept = "Toy"

the corresponding tuple calculus statement is

{ u0) 1 (3E) (Employee(E)

A Au[1] = E[3] / (E[5] • 18)

A E[2] = "Toy"))

The result is a set of single domain tuples, each with the property that the domain is computed

from the third and fifth domains of a tuple from the EMPLOYEE relation which has a value for the
second domain equal to "Toy". In the remainder of this chapter, domain names, rather than
domain indices, will be used. Hence, this statement can be rewritten

{ u') (3E) (Employee(E)

0 A u[Comp] = E(Salary] / (E[Age]. 18)
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A E[Dept] = "Toy"))

To review, the primary additions incorporated into TQuel were the selection (when) and

specification (start, stop, and at) components. The temporal expressions in the when clause

serve to select tuples to participate in the rest of the query. The temporal expression specifies

an ordering on the tuples. Conceptually, each possible set of tuples, one for each tuple
variable, is applied to the temporal expression. If the tuples satisfy the specified ordering,

they will be used for further processing in the query. The specification component uses event

expressions yielding events instead of a Boolean. In this framework, every clause in the event

expression takes one or more events or periods and yields a value which is either an event or

a period, with the complete event expression yielding an event.

4.2. Path Expressions in TQuel

The syntax of both temporal and event expressions is drawn from path expressions. Path

expressions were originally proposed as a high-level synchronization construct specifying the
allowable sequences of operations on an object of an associated abstract data type. The

following is a list of path expression constructs, with a and representing path expressions

and w denoting an operation on an object:

empty path e

elementary operation w

parallel a, a a occurs in parallel with /3

sequence a ; ,8 a is followed in time by,8

selection a I p either a or occurs

repetition a + one or more consecutive execution sequences

of a

a* (e= I a + ) zero or more consecutive execution
sequences of a

concurrency W # one or more concurrent execution

sequences of w

When path expressions are used in TQuel, the operations are replaced by tuple variables.
The path expression then specifies a (Boolean or event) value derived from the tuples as-

4A
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sociated with the tuple variables appearing in the expression. If only the selection, sequence,
and parallel operators appear in the expression, then one tuple is associated with each tuple

. variable. This has the same semantics as the Quel retrieve statement, since each resulting
tuple is derived from one tuple associated with each tuple variable appearing in the query. If
the repetition or concurrency unary operators are used, then each tuple variable appearing in
the expressions involved with these operators can be associated with multiple tuples. For
instance, the path expression

| A*

. specifies a sequence of non-overlapping tuples, all associated with the tuple variable A and all
participating in the derivation of a single result tuple. Allowing multiple tuples per tuple

* .variable complicates the processing of the query. More importantly, the semantics for the
Quel retrieve statement given earlier is predicated on one tuple per tuple variable (per output
tuple). Therefore, allowing multiple input tuples per tuple variable greatly alters the semantics
of the expression. The assumption will be that there is one tuple per tuple variable, and thus

*.. that no temporal or event expression contains repetition ('+' and '') or concurrency ('#')
operators.

The semantics for the two uses of path expressions, returning a Boolean and returning an
* event, will be dealt with separately. Returning an event is closer semantically to expression
- evaluation, and will thus be considered first.

4.2.1. The Start, Stop, and At Clauses

As discussed previously, the temporal delimiter component specifies the time during which
* the derived tuple is valid. For derived periods, the start and stop clauses are used; for derived

events, the at clause is used. In all three clauses, an event expression is used to specify an
*. event. It is important to note that the event returned by the event expression will in fact be one

of the events originally involved in that expression. Hence, the event expression is not ac-
tually deriving a new event from the given events; rather, it is selecting one of the given events
to return as a value. Of course, the selection criteria can be, and indeed usually is, a function
of the relative temporal ordering of the original events.

When full path expressions are allowed in event expressions, they can be ambiguous when
returning an event. The problem is the selection operator. There are two possibilities for
interpreting the following temporal expression as returning an event:

alp

Either the system must ensure that a and ft are disjoint, so that only one will return a value, or
ensure that both yield the same value. Hence, the temporal expression

(a; (b I c)). stop

a
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must not be allowed, for the selection terms are not disjoint, nor do they yield the same value.
If the temporal ordering of the tuple variables was bac, then this expression would return the

event associated with c (b is ignored in this case). However, if instead the temporal ordering
was abc, the event associated with either b or c could be returned.

Determining whether the selection terms are disjoint or return the same value is difficult.

The solution is to not allow the selection operator in event expressions.

One aspect remains to be specified; what is the value of "(a , fl)"? There are two reason-
able interpretations; the overlap (o) interpretation, where the result is valid only when both

underlying tuples are valid, and the coverage (c) interpretation, where the result is valid if

either of the underlying tuples is valid. The difference between the two interpretations is
illustrated in Figure 4-1. Although the overlap interpretation seems more natural, and was
used in the previous chapter, the distinction from a semantic viewpoint is minimal, so seman-

tics for both interpretations will be presented.

The syntax of event expressions defines a parse tree containing the following node types:

<tuple variable, <.start>, <.stop>, <parallel>, and <sequence>. The <tuple variable> nodes are

the leaves of the parse tree; the (start> and (.stop> nodes have one descendant, and the

<sequence> and <parallel> nodes have two descendants. This tree can be executed directly
in a bottom-up fashion: the <tuple variable> nodes will yield either an event (i.e., a timestamp)

or a period (a pair of timestamps); the (.start> and <.stop> nodes will take a period and yield
an event (the first or second of the timestamps, respectively); the <sequence> node will accept

two periods or events and yield a period. The action of the parallel node will depend on
whether the overlap or coverage interpretation is used; in either case, its action is well-

defined. The resuit of the top node of the tree will be an event from one of the tuple variables

in the event expression.

The semantics is now straightforward to specify. Each event expression can be trans-

formed into an expression on the terminals using the parse tree; the expression will contain

the following functions (E ranges over timestamps):

Start: E2 -, E Parallel(c), : E x E - E2

Stop: E2 -) E Parallel(c)2 : E2 x E -E

Sequential,: E x E -- E2 Parallel(c)3 : E x E2 
-- E2

Sequential2 : E x E2 
-- E2  Parallel(c)4 : E2 x E2 

- E2

Sequential3 : E2 x E -E Parallel(o), E x E2 -+ E
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A
I- I Underlying Periods

B

Overlap Interpretation

S- I Coverage Interpretation

Figure 4-1: The Overlap versus Coverage Interpretations for Combining Periods

Sequential4 : E2 x E2 -+ E2  Parallel(o)2 : E2 x E i E2

Event: Tuple Variable -+ E Parallel(o)3 : E2 x E2 -+ E2

Period: Tuple Variable- E2

There are four separate sequential functions, to accommodate all possible combinations of
events and periods: (event; event), (event ; period), (period ; event) and (period ; period). All
yield periods. The parallel operator under the overlap interpretation has no semantics for
(event , event). Event expressions under this interpretation will consider such cases to be
errors.

Let 4 be the function resulting from the transformations on 1r. The use of b, will be
*examined after the semantics of the when clause has been discussed.

4.2.2. The When Clause

i Several researchers have proposed a formal semantics for particular variations on path
expressions, involving denotational and axiomatic definitions [Berzins&Kapur 77], or transfor-
mations into Petri nets [Lauer&Campbell 75] or parallel programs [Andler 79]. The approach
taken here transforms the temporal expressions directly into a set of execution histories on
the tuple variables involved in the expression. Each execution history specifies a valid order-
ing of the tuples referenced by the expression. For example, the temporal expression, where
A, B, and C are tuple variables denoting event relations,

4
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(A ; B), C

will be translated into the set

{ ABC, ACB, CAB)

An assignment of tuples to the tuple variables, when ordered by time, must correspond to one

of the execution histories in the set. Hence, by providing the transformations and proving that

they yield a set of execution histories when applied to a temporal expression, we will have

defined the semantics of such expressions.

The syntax of the temporal expressions is as follows:

(t-exp> :: = <element>

<t-exp>. time

t-exp> . start

I <t-exp> . stop

"<t-exp> ; (t-exp>

I <t-exp> "I" <t-exp>

<t-exp> , (t-exp>
I(t-exp>)

Before the transformations are made to the temporal expressions, all tuple variables as-

sociated with period relations are replaced with (P.start ; P.stop), where P is the relevant tuple
variable. All instances of P . start, P . stop, E, and E . time, where E is any tuple variable

associated with an event relation, will be referred to as terminals. Each terminal specifies an

event in the temporal expression.

The transformation system defining the semantics of temporal expressions is comprised of

seventeen productions (where a and b are terminals, and a,/3, and y are arbitrary temporal

expressions):

(1) a. start a

(2) (a I).start :(a. start I/.start)

(3) (a start a . start

(4) (a, ,8). start =,(a. start ;/.start) I ,.start; a . start)

(5) a. stop = a
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(6) (a 1/.stop =(aI/)

* (7) (a;fi).stop =4,.stop

(8) in fl).stop =(a stop ,.stop)

(9) (a)

. (10) a, (,.8; y) = a

(11) a, (pl1y) =(a, P) I (a, y)

~~(12) (a ,) = (a, y) I (P , 7)

(13) (a; a), b = (a; b; a) (a; (a, b))

(14) (a, ;...; a), (b, ... bk) =(a,; b, I b, a); (aiI bk)

(15) a ; (Al 17") (a Pn;') I (a ; y)

(16) (P3 I ); a (ft; a) I(T; 0

Since these productions define the meaning of temporal expressions, it is important that
the reader is convinced that each production matches his or her intuitive understanding of the
various constructs. Productions (1), (2), (5), (15), and (16) are straightforward. Production (9)

. is used to remove extraneous parentheses; a must not be a binary expression to apply this
*. production.

Production (3) can best be understood when examined as part of a larger temporal expres-
* sion:

(a ; /8 . start; 8

expresses two possible constraints on the ordering of a, /, and 8: (a) must follow a in time,
and (b) 8 must follow the beginning of the period begun when a started and ended when /3

* finished. Since. start was explicitly specified, only constraint (b) is taken as the semantics for
this expression. To express constraint (a), the user must add the clause

^A(-;/3)

to the expression. Constraint (b) is indicated by replacing the subexpression (a ;/3). start
*:0 with a. start. Therefore, the production would map the example into



K~Section 4.2 1343

(a start;)

Similar comments apply to production (7). With regard to production (6), consider

(aIP)stop;8

* - This states that the end of either a or /3must be followed by 8. This statement is equivalent to
* saying that either a or /3must be followed by 8, or

(a 1 ,8) ; 8

Productions (4) and (8) are initially confusing: although the left hand sides are similar, the
right hand sides look quite different. As with previous productions, their effect can be under-
stood in terms of their containing expression. For production (4), examine this expression

(a ,3 .start;8

a and P3 occur in parallel; S must follow the beginning of this parallel activity. In the overlap
interpretation, (a , P3) is valid at the point when both a and P3 become valid. Since a . start and
ft . start are both events (independent of the internal structure of a and P3), they can be
ordered:

(a , /).start-a ((a . start ; 3.start) I(3.start; a . start)) . stop

Similarly, for production (8), examine

(a ,/3) .stop; 8
In the overlap interpretation, 8 may start when either a or /3 have stopped. Again, since
a . stop and /3. stop are events,

(a , /3) .stop M((a . stop ; 3.stop) I(3.stop; a . stop)) . start

(a . stop 1/.8 stop) (by (2) and (3))

The next six productions define the semantics of the parallel operator interacting with the
* sequence and selection operators. Except for (11) and (12), which allow distribution of the

parallel operator over selection, the productions all involve at least one terminal. The reason-
ing behind these productions can be seen by considering a production not on this list:

a,/3;y- ((a ,/);I(3; (a , 1))I1?
* The problem is that a may occur in parallel with fl, in parallel with y, or in parallel with both

(remember that a can have an arbitrary internal structure). (10) substitutes the terminal a,
which is guaranteed not to have any internal structure, for a. In the overlap interpretation the
result of an event occurring in parallel with a period is simply that event. Of course, a side
condition is that a must occur after /3 . start and before -y . stop. As with (3) and (7), this

4 condition must be stated explicitly by the user.
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(13) and (14) also use this technique. In (13), b can either be between a and the start of a,or

during a.

Production (14) is a generalization of (13), and is thus more complex. In the overlap inter-
. pretation, the result starts as soon as both sequences start, and ends when either sequence

end. Since a, and b, (and a and bk) are events, they temporally delimit the respective se-
quences. They can also be ordered. Hence"(a, .. aj), (b, ; .;bk) = (a,; ;b, I b, ;a,). stop; (ai bk bk ;aj). start

(a, ;b b, ; a,); (aiI bk) (by (6), (2), (3))

The usefulness of these productions is evident in the following theorem:

Conversion Theorem:

The productions (1) through (16) transform an arbitrary temporal expression into

a relational expression (involving only the sequence and selection operators) in

standard form (a selection of sequences):

~(a , ; 2 .. . ; a) I (b, ; . ;bi) " l(z i ;. . z )

The proof is somewhat involved, and is given in appendix B. The standard form provides

the set of execution histories defined by the original temporal expression.

4.3. Formal Semantics

It is now possible to specify a formal semantics for the TQuel retrieve statement. Let T' be
the temporal expression r with the tuple variables t which correspond to periods replaced
with (ti . start ; ti . stop), the tj . start terms replaced with 6,, the t . stop terms replaced with
6 j+k, and the ti .time terms (and t, terms, for those tuple variables corresponding to events)
replaced with 81. The 6i serve as terminals in the rest of the analysis. This somewhat unusual

* numbering scheme is necessary in order to make ti. start and ti. stop unique terminals. Define

'(6) - r, [starttime] if i < k, and 'i [stoptime] otherwise

The starttime and stoptime domains are the implicit domains associated with all tuples. Let

Order (9-) = Sm, • •r n, where n is the number of unique terminals inr",

t' contains Sm, and r(S m,) < 5(Smi +), for 1 < i < n -1

Order defines a sequence of terminals ordered by the time values of the tuples associated
with those terminals. This definition of temporal order assumes that metric time is being used,
where time is modeled as the real number line, and the "before" relation is isomorphic to "<"

for reals (i.e., the time of Newtonian physics). In the context of monitoring distributed sys-
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tems, the measured time must be global and satisfy the before relation. Finally, let W(,) be the
set of sequences generated from -r by the productions as shown by the theorem.

With all of this mechanism, the semantics of the TQuel retrieve statement

range of tj is RI

range of tk is Rk
retrieve (t i l  0 1 . tir Dr
where
when T-
start P
stop X

is quite straightforward:

u(+2}) I (Mt,) ... (3tk) ( R1 (t) A ... A Rk (tk)

A u[l til Uj A ... A u[rl = t r Or]

A Vk

A Order(r') E W('-')

A u[starttimej = 4, (tk, ..... tk )

A u[stoptime] = (Ox (tm. ... , tmq)

Note that p is defined to be the number of unique tuple variables in V, and q the number of
unique tuple variables in X. (D, was defined in section 4.2.1 to be the function derived from
the event expression , on the tuple variable in the expression. The superscript (r + 2) in-
dicates that the tuple u has r explicit domains and 2 implicit domains, the starttime and
stoptime domains (events will have only one implicit domain).

The when clause specifies that the tuples, when ordered temporally, correspond to one of
the execution histories in the set of execution histories defined by the temporal expression.
The start and stop clauses specify the values of the starttime and stoptime domains through
the functions defined by the event expressions appearing in those clauses.

There are two aspects remaining to be covered: aggregates and indeterminacy. Although
the tuple calculus semantics for Quel retrieve statements without aggregate operators may be
found in [Ullman 821, no such semantics is given for the more general case. Indeterminacy is
totally absent from Ingres and Quel; the information in the database is assumed to be consis-
tent and complete for the aspects of the real world at a particular time being modeled by the
database. Such an approach is infeasible when using temporal databases in monitoring.
First, a semantics will be developed for aggregates, and then all of the semantics will be

extended to include indeterminacy.
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4.4. Aggregate Operators

The semantics of standard Quel aggregate operators (c.f., section 3.6) is best handled by
defining the result of the aggregate, and then using this result in ,ie tuple calculus expression

. for the entire statement (the implementation performs an analogous extraction of the ag-
gregate expressions). Simple aggregates result in a scalar value; using an example from the
previous chapter:

retrieve (Number = Count(E.Name where E.Dept = "Toy"))

Num = cardinality of

? { n) I (3E)(Employee(E) A E[Deptl = "Toy" A n[1I = E(Name]) }

{ u(') (E) (Employee(E) A u[Number] = Num)

Since the tuple variable did not appear outside of an aggregate expression, it can be
eliminated in the second tuple calculus expression:

{ u' I u(Number] = Num } { Num }

Aggregate functions require intermediate relations:

retrieve (E.Name, MS = Min(E.Salary by E.Dept))

MS = { mI (VE) ((Employee(E) A E[Dept] = m(l]) D m[21 _ E[Salary])

A (BF) (Employee(F) A F[Dept] = m[1] A m[2] = F[Salary]) }

This statement defines a relation MS, with two domains, a department and a minimum salary.
The first clause states that all employees of that department make at least the minimum salary
of the department; the second clause says that at least one employee does indeed make the
minimum salary. Both clauses are necessary to correctly define the minimum salary. The
calculus statement defining the result of the retrieve statement uses this temporary relation:

{ u2 1 (3E)(3m) (Employee(E) A MS(m) A m[1 I = E[Dept]

A u[Name] = E[Name] A u(MS] = m(2] I

The correct minimum salary is selected from the MS relation using the department domain. It
is evident that the semantics for an arbitrary Quel aggregate would be similar to the above
expressions.

*l As with the other constructs, the semantics of the TQuel aggregate operators will be ob-
tained by extending the tuple calculus statements just presented. The central issue is how to
incorporate time into the predicates of the calculus statement. Before this issue can be
addressed, however, the informal semantics must be well-understood.

S
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4.4.1. Informal Semantics

Extending Ouel aggregates to include the passage of time is surprisingly complex. The
most important goal is to ensure that the semantics are as natural as possible. A second goal

is to ensure that, when time is stopped, say, by considering an aggregate at a single instant of

time, the semantics are equivalent to the standard Quel semantics (i.e., they reduce to the
Quel tuple calculus equivalents).

In Quel, the aggregate operator partitions the tuples into groups, and then applies the

operator to each group. In TQuel, the composition of the groups changes over time (by
adding and removing tuples), so the value of the function also changes over time. The value
returned by an aggregate operator may be instantaneous, that is, derived at each instant in

U, time from the values of tuples valid at that particular time, or cumulative, derived potentially
from tuples valid at previous instances of time. The instantaneous version of Count, for
instance, determines the number of tuples valid at each instant of time. The cumulative
version of Count has as a value at a particular instant of time the number of tuples which are
valid at that time, or were valid previously. The cumulative version increases monotonically,

whereas the instantaneous version does not. Aggregate operations on event relations must

be cumulative, since the probability that two or more events occur simultaneously becomes
arbitrarily small as the timestamp granularity decreases. For period relations, two versions of

each aggregate operator are provided. Note that for cumulative aggregate operators, there
must be some designation of when time started. For instance, the cumulative count will be
zero until the first period occurs. The initial tuple will have a value of 0 starting at the

designated time and ending when the first tuple starts.

There is one other aspect concerning aggregate operators on temporal relations which

should be addressed. The instantaneous Count operator can count periods easily. However,
how does one cumulatively count a collection of periods? More specifically, if one period

starts at t, and ends at t2, and another period with exactly the same values for the domains

starts at t2 and ends at t3, then should the count be 1 or 2?.

This situation is similar to the issue of duplicate tuples in Ingres. Certain operators such as
projection often generate duplicate tuples. These duplicates are usually tolerated, since

eliminating them can be computationally expensive. However, aggregate operators such as
Count will return different results depending on the presence of duplicate tuples. Ingres

4 provides two versions of count, sum, and avg. Count returns the number of (possibly

duplicate) occurrences and CountU returns the number of unique occurrences. Note that
the other aggregate operators (min, max, any) do not have this problem. Hence, there is

only one version of these operators.

4 qIn TQuel, there are two dimensions of duplication: identical tuples valid at the same instant

of time, and identical tuples (in the explicit domains) valid at different instants (or periods) of

I'
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time. In the first dimension, relevant to instantaneous aggregates, duplicates are eliminated
(e.g., only the analogue to the CountU operator is provided). In the second dimension, the
temporal dimension, the issue is more complex. -

6 .There are at least three possible results for the situation of a period starting at the same
time the previous period ended. The most straightforward is 2, since there are 2 tuples. This
solution corresponds to the Ingres Count operator for the similar situation of duplicate tuples.
The second possible answer is 1, since there was one contiguous period of time for which the
relationship was valid. This approach would count the number of contiguous periods of time,
with the periods separated by intervals when a tuple was not valid. This solution is analogous
to the Ingres CountU operator. Implementation of this approach on a temporal database is

difficult in the presence of indeterminacy. The third answer is neither, that the value of count
in the integral of the number of periods over time. This solution is not strictly necessary for
the count operator, since the same effect could be obtained using sum(duration(T)), where
T is a <tuple variable>. Similarly, the integral sumc operator on T.Domain can be obtained
using

T.Domain * sum(duration(T))

In chapter 3, the simplest option to implement, solution 1, was chosen.

There exists a potential avgc operator for every form of sumc and countc, since avgc is
defined to be sumc / countc. In fact, even when only the integral characterization is used,
there is some choice involved. There is one instantaneous version, and at least four versions
of the integral avgc operator possible. The instantaneous version exhibits changes at both
the start and stop events of the tuple. Versions 1 and 2 of the integral avgc operator exhibit

. changes in the aggregate whenever a new tuple begins, and ignore the duration of the tuple.
They differ in whether a period starting at the same time as the previous period ends is
considered one or two tuples. Version 3 weights the value by the duration of the tuple.
However, the time periods when no tuple is valid are ignored, causing the resulting value of
remain constant over those periods. Version 4 treats the intervening periods as tuples with a
value of 0. Hencei the value of this version of avgc will, in the absence of tuples, asymptoti-
cally approach 0. Version 4 was chosen, since it seemed to be the most intuitive when applied

0 to sample queries.

4.4.2. Formal Semantics

Now that a clear definition of the aggregate operator has been given, it is appropriate to be
more formal. Recall that each tuple contains one or two implicit time domains, starttime and
stoptime. These domains can be used to define a predicate indicating when a tuple was valid:

* valid(u, t) -u[starttime] __ t < u[stoptime]

O
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Since time is represented using timestamps, this predicate involves comparing three real
numbers (again, metric time is assumed). The instantaneous Count operator can now be
defined as returning the number of tuples valid at any instant of time. Formalizing this state-
ment in an example:

retrieve (Number = Count(E.Name where E.Dept "Toy"))

Num t cardinality of

{ n' +2)1 (3E)(Employee(E) A valid(E,t) A E[Dept] :S "Toy"

A n[1] = E[Name]) }

{ u +2) 1 (Vt)(valid(u, t) :D u[Number] = Numt)

The first statement defines a scalar function Numt, the number of employees in the toy depart-
ment at time t. The second statement specifies that the Number domain of u contains the
number of employees in the toy department during the time u is valid. Unfortunately, the
period of time u is valid has been incompletely specified: in particular, the result relation
should have only one tuple for every period of time when the count is constant, rather than
several (perhaps overlapping) tuples containing the same count. The statement can be
amended by defining the macro

Maximal (u, t, V) - (:t')(t3 0 t A -'valid(u, :) AV t = V/)

)(3ft)((t < tV < tI)V (t ;> V> f t)) ^V t ,,V )

This macro ensures that u is valid for the entire period when V has the same value, by
specifying that, given u is valid at time t and has a value Vt for the relevant domain, if u is not
valid at another time t', yet has the same value, then there must have existed an intermediate
time when the value was different. The Maximal predicate can then be used as follows:

{ u( + 2) 1 (Vt) valid (u, t) =_ ((u[Number] = Numt) A Maximal(u,t,Num)) }

The following is a slightly more complex example.

retrieve (E.Name, MinSalary=Min(E.Salary by E.Dept))

Taking it one step at a time, the non-temporal version appears on page 46. The first
(incorrect) temporal version is

MSt = { m(2) I (3E) ((Employee(E) A valid (E, t) A E[Dept] = m[1])

D m[2] _ E[Salary])

A (QF) (Employee(F) A valid(F, t) A F[Dept] = m(1]

A m[21 = F[Salaryl)}

{ u(2 2) I (V t) (valid(u, t) D (NE)( 3m) (Employee(E) A valid(E, t) AMSt (M)

A m(1J = E[Dept] A u[Name] = E[Name] A u(MinSalaryj = m[2]))

I i ' i ' ° . . . ..
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Again, the period of time u has been valid has been incompletely specified. To specify the
maximal period, first define

Vt (d) -v such that (3E)(3m)(Employee(E) A valid(E, t) AMSt (in)

A M[1I E[Dept] A V = E[Namej A m(2] d

The correct temporal semantics is then

{U(2+12) 1 (Vt) valid(u, t) =-(ufMinSalary] =Vt(u(Narne]))

A Maximal (u, t. V(u(Name]))

The semantics of the cumulative CountC operator (version 1) looks quite similar to that of
the instantaneous Count operator:

retrieve (Number = CountC(E.Name where E.Dept = "Toy"))

NumCt = cardinality of

f n( +4 1 (30' (BE)(Employee(E) A f' 5 t A valid(E, f')

A E[Depti "Toy" A nfl] =E[Name])

{u(": 1 (3t0 valid(ui, t) ((u[Number] =NumC,) A Maximal (u~t, N Ur) Q

n English, this says that the cardinality, at any instant, is equal to the number of employees
* workingj ini the toy departmtunt at any time prior to the instant in question. The reader may find

it useful to compare these statems-nts vvit1h their nontemporal counterparts. Note that the
function NumCt does not check for contiguous periods; it counts 2 contiguous periods as two
periods, rather than as one.

The semantics of the avgc operator is more complex, since the duration of the period is
involved. For the query which determines the average salary by department over time,

retrieve (E.Dept, AS=avgc(E.Salary by E.Dept))

{u(-+) (Vt) (valid(u, t) a-s(ufAS] =A(u(Dept], t))))

where A(T, d) =1 -1f 5 V(E, (valid(E, t) AE[Dept] =d))dtJ E C Employee

and V(E, P, d) A- E[Salary] if P and 0 otherwise

There are several assumptions being made in the above statement. In addition to assuming
that time is metric (isomorphic to the real numbers) it is assumed that time is equal tempered,
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that is, the "distance" from t, to t, + At is equivalent to that from t, to t. + At. Otherwise the

average is meaningless. Also, it is assumed that there is a designated time t = 0. This time is

arbitrary, but has a great impact on the value returned by the aggregate. t = 0 will usually

correspond to the beginning of the experiment. Note that the semantics are independent of

the unit of time chosen; the same values will result whether time is measured in
microseconds, minutes, or years.

At this point, a formal semantics for. the entire TQuel retrieve statement has been

presented. However, this semantics has totally ignored the effects of incomplete information.

The remainder of this chapter will examine the sources of incomplete information in the

process of monitoring, and will extend the semantics to include this indeterminacy.

4.5. Indeterminacy

The development of the semantics preseated above assumed complete and accurate infor.

mation in the relations being used to derive new relations. Unfortunately, there are many

sources of incomplete and incorrect information. Collecting all the events concerning a
relation may be impossible, due to inadequate processing or bandwidth resources, or the
inability to generate the correct types of events. Sampling is another source of incomplete

information. It is impossible to sample a relation continuolisly. and the slower the sampling

frequency, the more changes in the relation are overlocked. Finally. the clocks in a distributed

systems cannot be totally synchronized, introducing further uncertainty (see section 5.5.2).

The monitor must be able to deal in some way with these limitations, and to determine how

v.iid thie collected information is. If it is impossible to acquire the necessary events concern-
ing the primitive relations being monitored, then the monitor must revert to sampling at least a

subset of the relations. If the sampling frequency is excessive, then it must be lowered. Each
step represents a decrease in the precision of the information available to the user. Such
limitations will always be imposed on a monitoring system; it is important that the system can

gracefully handle varying amounts of monitoring information, making as much use of this
limited information as possible.

A second problem relating to incomplete information is the loss or delay of samples, and

the loss of event information. The ramifications of missing or delayed samples should be
confined to (a) an increased probability that a condition became true after the last sample and

was subsequently invalidated before the next sample, and (b) a certain amount of 'definite'

knowledge reduced to 'possible' knowledge.

The problem of lost events (which were generated but never recorded by the monitor) is a

more serious one. Probably the only way to successfully deal with this problem is to provide

the monitor with the knowledge necessary to detect inconsistencies in the data being col-

4[
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lected and (a) generate the missing events, with an appropriate occurrence uncertainty, or (b)
at least revise previous information to account for the increased uncertainty. The mechanism
presented below is adequate in the presence of samples; handling lost events is beyond the
scope of this thesis.

To cope with the presence of incomplete information, all information is classified as
determinant (i.e., true), indeterminant, or false. The closed world interpretation (c.f., [Reiter
781) is adopted, so the statement that the truth value of an atomic formula is false is
represented by the absence of a tuple from the appropriate relation. Hence, only determinant
or indeterminate information need be explicitly represented.

Events as measured are not instantaneous, but are associated with a with a "fuzzy" period
specifying when the event might have actually occurred [Kahn&Gorry 751 (see Figure 4.2).
Periods are composed of three underlying periods: the time in which they are possibly valid
(the initial portion), the time they are definitely valid (the definite portion), and the time they

*_ are possioly invalid (the final portion). These uncertainty components are included in the
calculation of derived periods and events by the monitor, and are delimited by the designated
ties. Spacial fuzziness is hndled in a similar manner in [McDermott 301.

*- 4.3. 1. Semantics

In T~uel, indeterminacy is handled automatically during the execution of the query. There
are no special constructs provided for the user to specify how incompicAo information is to be
processed: instead, existing constructs aro associated with semantics describing how an
arbitrary degree of indetermmnacy is dealt with. In the limiting case, thut of no indeterminacy,

* the semantics should be identical to those just presented. The primary goal in the specifica-
tion of the semantics is to preserve as much information as possible in the derived relations,
while ensuring that such an equivalence is true.

Since the representation of events and periods has just been modified from that assumed
earlier, the semantics of the retrieve statement must also be changed. Instead of one implicit
domain for events. starttime, there are now two (see Figure4-2): start-indeterminant (or istart)
and start-determinant (or dstart). Similarly. the two implicit domains for periods, starttime and
stoptime. are replaced by four: Istart, dstart, d-top, and istop. Metric time is still assumed; in
particular, the following relationship must hold for all event and period tuples:

istart < dstart < dstop _< istop

(the four implicit domains are each real-valued timestamps). The starttime and stoptime
domains appeared in four places in the tuple calculus semantics presented above: in the
definition of Order, in the term associated with the start clause, in the term associated with the

stop clause, and in the terms associated with the aggregate operators. Each occurrence
must be rewritten using the new implicit domains.

I
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Events without indeterminacy:

Events with indeterminacy:

istart dstart

(a)

Periods without indeterminacy:

I I,

':" 'Periods with indeterminacy:

--- I I--4 -H---I----III...-

istart / \ dstart dstop istop

(b)

Fiuro 4-2: Representing Uncertainty

The Order function defines a temporal ordering on the events provided as arguments. This
temporal ordering is tested for membership in a set of execution histories derived from the
temporal expression in the when clause. However, when indeterminacy is considered, a strict
temporal ordering of events may not be possible, due to the overlap of the indeterminant
portion of two events or periods. The solution is to instead test each execution history against
the argument events, with three possible outcomes: (1) no execution history was satisfied by
the given events, (2) one or more execution histories were satisfied, or (3) one or more

execution histories may have been satisfied, but the indeterminacy of the events prevents a
definite decision. Since each execution history is a sequence of events. these tests involve

* repeated application of the predicate before:

before (a, b) -a(starttime] < b(starttime]

As an example, the temporal expression

(A ; B), C

is translated into the following set of execution histories

I
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(ABC, ACB, CAB}

which may easily be translated into the propositional calculus statement

(before(A, B) A before(B, C)) V (before(A, C) A before(C, B))

v (before(C, A) A before(A, B))

Since indeterminacy requires this predicate to have three results, true, false, and indeter-

minant (0), the tuple calculus must be a three-valued logic system [Rescher 68]. We will base

this system upon the following truth tables (where a and ,8 are arbitrary truth values) 1 :

FA a= F aAF = F TAT = T otherwise a A =

Tva = T aVT = T FvF = F otherwisea V =a
"F = T - a= -T= F

The existential and universal quantifiers behave like iterated vand A, respectively. In the tuple
calculus statement,

{ula}

if (c has a truth value of true. then u is in the set; if a has a truth value of false, then Ii is not in

the set (the closed world interpretation); and if a has the truth value 0, then u is in the set but
.. is indeterminant.

The before predicate has two parameters. both events, and is defined as follows:

before (a. b) A T if a[dstart] < b(istart], F if a[istart] >_ b[dstart], and Q otherwise

Hence, before(a, b) is true if the entire period when a may be valid occurs prior to any time
whert b might have occurred, false if b occurs completely before a might have occurred, and
indeterminant otherwise. To complete the details, let T' be as defined previously, and W'(r')

be the propositional calculus expression derived from W('r) as described above, translating a

set of execution histories into a disjunction of conjunctions. Define

*0

* 11Many systems of 3-valued logic have been proposed. The system adopted here was introduced in 1938 by S.C.
Kleene (Kleene 38). In this system. a proposition is to bear the third truth value 12 if the proposition is unknown. This
characterization is in contrast to other systems, such as the one proposed by Lukasiewicz, where S is considered
somewhere between true and false. Lukasiewicz's system was motivated in part by concerns of "future
contingency," whose occurrence, such as that of a sea battle tomorrow (Aristotle's example) is not determinable,
especially given free will. Future contingencies are handled in a more elegant fashion with temporal logic [Rescher

* 711. Although time appears throughout in the semantics presented here, the application of temporal logic is not
necessary, since the formulae only involve temporally definite statements about the past. The primary operational
difference between the two 3-valued systems lies in the truth value form Q DS2. Kleene's system defines a D, as
•1a V , so U :-U- U. In Lukasiewicz's system, a :)a isa tautology, so S1 D1)Sl--i T.
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T, (8i) & r,[istart] if i < k, and 'ri[dstop] otherwise

T2 (8,) A ;i [dstart] if i < k, and ri [istop] otherwise

T1 defines the start of the indefinite portion of the event in question, and T2 defines the end of
the indefinite portion. Using there functions, before can be defined:

before (A,, 8) A T if T2(8/) < T, (S), F if T, (81) > T2 (8j), and Q otherwise

That is, an event is before a second event if it is certain to have occurred before the second
event might have occurred. An event is not before a second event if the latter event
definitely occurred before the former event might have occurred.

To account for indeterminacy, rewrite

A Order(Y) EW(-r)

as

A W'1(r)

Since the tuple calculus used here is a three-valued logic system, W'(r) may also have a
value of Q. In that case, there is no definite portion in the derived period.

The terms associated with the start and stop clauses are not hard to generalize. Since the
function 4 now returns a pair of timestamps (istart, dstart) rather than an individual times-
tamp, each term is rewritten as two terms:

A u(istart] = 0, (tk ... , tk ,)(istart ]

A u[dstart] = (, (tkj ,. , tkP)[dstart]

A u[dstop] = 'x(tm," tmq )(istart]

A ujistop] = Ox (tm,," tmQ )[dstart]

Of course, the functions contained in D will be slightly different. For instance, in the function

Start: E2 -+ E

E ranges over pairs of timestamps (real numbers) instead of individual timestamps.

4.5.2. Defaults

The semantics should also specify the defaults assumed in the language. The defaults for
the additional clauses in TQuel should be natural to the user. If only one tuple variable (say,
A) is used, and it is associated with a period relation, then the defaults are
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start A.start

stop A.stop

These defaults say that the result tuple is to start when the underlying tuple started and stop
when the underlying tuple stopped. When an event relation is associated with the one tuple

variable, the default is

at A

*" specifying simply that the result tuple was valid at the same instant the underlying tuple was

valid.

When two or more tuple variables are used, the situation is more complex. Let us assume
initially that all the tuple variables are associated with period relations. The retrieve statement
with defaulted temporal constructs looks identical to a standard Quel retrieve statement; thus

it should have an identical semantics. An Ingres database is not temporal; instead, it ad-
vances in discrete jumps. Whenever a relation is updated, the "clock" advances, and the

database is assumed consistent at the new time. Hence. the tuples participating in a retrieval
- are all valid at the time the query is executed. Extending this semantics to a temporal

database is now straightforward: the result tuple is valid at all the points in time when all the

underlying tuples were valid. Thus, if the tuple variables t,, t2 .... tk are involved in the query,

'- then the default temporal clauses are

when (t..start. th.start).stop ; (t 1 .stop .... tk.stop).start
start (t .start. t..start).stop
stop (t..stop. tk.stou).start

The start clause specifies that the result tuple is to start the instant all the underlying tuples

are valid; the stop clause specifies that the result tuple is to end as soon as any underlying
tuple is no longer valid. The when clause states that all tle tuples should be valid for a finite

period of time, and is equivalent to

when (t, ..... tk)

which indicates that all the tuple overlap each other. If a particular tuple variable t, is as-

sociated with an event relation, simply replace 'ti.start' and 'ti. stop' in the above clauses with
'ti.time', or simply, 't1 '.

When aggregate operators are used in period relations, the decision needs to be made
- whether to consider the instantaneous or cumulative version to be the default. An argument
," similar to the one above concerning multiple tuple variables concludes that the instantaneous

. version more closely preserves the semantics of standard Quel. Hence the Count operator

will be the instantaneous version; CountC must be used if the cumulative version is desired.

4

4 [ I .. . . ..
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4.5.3. Indeterminacy and Aggregate Operators

As before, to formally define the semantics of aggregate operators given indeterminacy, the
informal semantics must first be understood. Without indeterminacy, the aggregate operator

partitioned the tuples valid at any instant (or valid at any time prior to the instant, for cumula-
tive aggregate operators) into groups, and assigned a value to the tuples in each group. Due

to tuples which start and stop at indeterminate times, the resulting value is also indeterminate.
Hence, it is impossible to assign a single value to each tuple (see Figure 4-3a).

There are three possible strategies in dealing with this anomaly. The first is the easiest and
least satisfying: restrict the value of Count to be an integer or the special value undefined at
any point in time. The value will vacillate between a determinate integer and undefined Of

course, there still won't be a single valued count for each tuple, but at least there will be a
value for each instant of time (see Figure 4-3b).

The second strategy is only slightly more appealing: for those periods when the first
strategy assigned undefined, provide a value which makes Count well-behaved, for an ap-
propliate characterization of "well-behaved" (see Figure 4-,c), and make the tuple com-
pletely indeterminant (i.e., no definite portion). This allows Count to have an integer value
over all time, but is somewhat arbitrary as to the value assigned to indeterminant portions.

The third strategy is to contend with multiple v-lues of Count (see Figure 4-3d). On the

one hand. this strategy keeps the most information, which might be useful in further deriva-
ticris. On the other hand, it suffers in at least two aspects. Ilmplementation is much more

difficult bec_..;se an instant might be represented by several in!eterminato tuples, with dif-
fereunt values. Also, tne information is difficult to deal with: is it h.,pful to know that the Count
of something at 3 pm was perhaps 3, or maybe 5, or even 16?

The first strategy corresponds to extending the domains with null values [Vassiliou
79, Lipski 79, Codd 791. There are many possible semantics for null values; the one relevant

.4 here is "value unknown". The second strategy assigns the truih value S1 to the entire tuple.

The third strategy implies a many valued logic, with its inherent complexity. Since the second

strategy is most consistent with the representation of periods dr-scribed previously, it was
selected for the initial version of the system.

4 At this point, there exists an asymmetry in the expressive power of the language. The at

clause allows an event relation to be derived from period relations, and the start and stop

clauses allow a period relation to be derived from other period and event relations. However,
there is no way to derive a period relation from a single event relation. One use of this

functionality is the conversion from traced events to the corresponding periods. In this case,
the delimiting events are available, and the user specifies that the period be derived. Another
use is the conversion from sampled events to the corresponding events. These conversions

4,
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"' ~I---- '------II- I-

(a) 'Tuples in R

0 Und. Und. I Und. 2 Und. 0

(h) Count(R)--Strategy I

0 
0,

(c) Count(Ri)--Strategy 2
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-- ---- f-------- I+-I F ------- I
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(d) Count(R)--Strategy 3

Figu re 4- 3: Different Strategies for Handling Indeterminacy wiih Aggregate Operators

differ only in the indeterminacy of the resulting periods. In the case of traced events, the

indeterminacy is limited to the indeterminacy in the underlying events; in the case of sampled

events, exactly the opposite is true: [he determinacy is limited to that of the underlying events.

The appropriate conversion operator depends on whether the underlying relation is
4 sampled or traced. There is also the issue of converting a derived event relation into a period

relation. Determining whether a derived relation may be conuidered "traced" for the pur-

poses of converting into a period relation requires substantial knowledge of the functional

dependencies of the domains in the relation. Instead, an alternative was adopted requiring
less sophistication in the monitor. Traced events, which the monitor knows are traced, are
immediately converted to periods. To obtain the underlying events, the at clause may be

used. Only one conversion operator is provided for the user; ExtendC assumes the under-
lying events are sampled. This assumption is correct in the best case; in the worst case the

resulting relation will be completely indeterminant.

I'

'I= , ,, n m i - I I I "
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The formal semantics is now straightforward. The only place indeterminacy appears in the

semantics of aggregate operators is in the definition of valid, which may be defined using the
new implicit domains as

valid(u, t) _ T if (utdstartl < t) A (t < u(dstopl), F if (u(istart] >_ t) A (t > ufistop]),

and Q otherwise

As with W'(,r), if the truth value for valid is 9 for some time t, then the tuple calculus statement
reduces to

IuI U

for the time t, in which case L1 is ideterminant at time t.

It remains to be shown that, in the absence of indeterminacy, the semantics just presented

is equivalent to that discussed in the first part of this chapter. Clearly. without indeterminacy,

the initial and final portions are absent and the following holds for all event and period tuples:

istart = dstart and dstop = istop

In thi- limiting case,

1'. (8i) = T2(01)

and lhu'; the before and valid pre. icate may only have the tru0h vN'ILS true and false. R is
eliminated as a truth value, reduci 9j everything to the standard two-valued logic system. with
an identical cemaritics to that defined initially.

4.6. Summary

This chapte: has presented a complete formal semantics for the entire TQuet retrieve state-

ment. The chapter proceeded in an incremental fashion, starting with the basic Quel seman-

tics. then adding the new TQuel clauses and additional semantics for aggregate operators,
and finally, adding semantics for indet(orminacy. After a short review of tuple calculus and a
discussion of the application of paih expressions in TQuel, the semantics of event expres-
sions was described as functions on events or pairs of events (periods), ultimately yielding an
event. A transformation system provides the somantics of temporal exprescions. yielding a

set of ez-ecution histories on the tuiples participating in the exprcssion. At that point, a tuple
calculus expression for TQuel retrieve statements without aggregates was prerented.

The semantics of Quel aggregates involved an auxiliary relation which was then used in the
primary tuple calculus statement. Time was added by using a predicate indicating when a

tuple was valid. Indeterminacy involved several changes: use of 3.valued logic, a more com-

plex definition of the before and valid predicates, and a slightly altered semantics for the when

clause.
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As a result, the semantics of a TQuel retrieve statement is defined in terms of a tuple

calculus statement which can be mechanically produced from the TQuel statement. Sum-

marizing,

Result: A formal semantics may be defined for the entire TQuel retrieve state-

ment. This semantics has the following properties: (a) it reduces to the standard

Quel semantics when the time domain is fixed at a particular time; (b) it includes

aggregate operators in a uniform fashion; and (c) it accommodates an arbitrary

degree of indeterminacy.

6

E i

6

6
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iII. Realization

To verify the thesis that the relational model is an appropriate formalization of the infor-

mation processed by a distributed monitor, it is necessary to show that the monitor can take a

query in a temporal query language (in this case, TQuel) and subsequently gather the correct

low level information, process it as directed by the query, and present the high level infor-

mation to the user, all in a relatively efficient manner. This part describes in some detail the

mechanisms and techniques enabling the monitor to accomplish these objectives.

I

4,

'4

I
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Chapter 5
A Low Level Data Collection Mechanism

Data collection techniques have been at the center of attention in previous work in monitor-
ing, to the exclusion of other areas such as data representation and manipulation. Most
papers on the monitoring of user programs are variations on the technique of profiling in a
variety of programming languages. This approach involves execution counts or timing at the
procedure, statement, or instruction level, using sampling or tracing. However, there have
been few advances since the early 1960's, when sampling and tracing were first
introduced [Plattner&Nievergelt 81]. Data collection for monitoring of operating systems has
relied on sampling or tracing [Nutt 791. Techniques for usiog special hardware have been
more innovative: since additional logic imposes no overhead on the computation, capabilities
such as event counters, combinational and s -quential logic on events, comparators, and
histogram generators can be provided [Gonner 69. Wulf et a!. 81]. Network data collection has
concentrated on performance evaluation issues and has, in general, been confined to tech-
niques mentioned above [Abrams&Treu 77, Nutt 79].

Recent systems have taken a more integrated appioach to monitoring, attempting to
reduce thie great effort necessary when using the low-leve! tools previously available. A
unified set of facilities for monitoring a packet radio network was developed at UCLA [Tobagi
et al. 76]. Gertner's system [Gertner 801, described earlier in section 1.4, allowed relatively
painless monitoring of a distributed system at the message passing level. The Computer
Network Monitoring System (CNMS), a rather ambitious system designed at the University of
Waterloo, used a sophisticated combination of hardware and software to monitor a
geographically distributed network [Morgan et al. 75].

In spite of these developments, an integrated approach to monitoring data collection is still
lacking. One possible strategy for developing such an approach is to start with the relational
model described in the previous chapter. Unfortunately, the relational model is too general to
be of much help in characterizing the data to be collected. Another possible strategy
proceeds by developing a conceptual model of the behavior of the program to be monitored,
and attempts to represent that behavior within the relational model. This strategy will be the
one pursued in the present chapter. The next section begins with a comparison of data
collection as performed by a conventional data base system and by a monitor. A model of the
environment where the data collection takes place is then presented, followed by a discussion

4 PEIU PAGE
iIB AI
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of the properties an effective mechanism must have. The remainder of this chapter will

*present such a mechanism and examine how various aspects of the environment impact it.
The discussion will be independent of any particular operating system; details of the im-

plementation of the mechanism in two operating systems can be found in chapter 8.
However, it is assumed that the monitor is partitioned into two communicating components: a

. resident portion, performing those functions requiring close interaction with the monitored

* system, and a remote portion, performing the functions requiring close interaction with the

user. Both portions together comprise the complete monitor. This separation is necessary
when monitoring a distributed system, where a resident monitor would exist at each proces-
sor, sending collected data to the centralized remote monitor, which may or may not execute

on one of the processors being monitored. Functionally, the resident monitor collects the

event records and interacts with the operating system, and the remote monitor analyzes and

displays the monitoring data. These functions will be discussed in more detail in Chapter 8.

5.1. The Environment

Data collection in the monitoring domain differs from that in conventional database systems
in several ways. In most information processing systems, the emphasis is on information
manipulation and retrieval, with minimal aide for data collection. Alihough some systems

provide tools for key entry and point-of-sole data acquisition, data collection remains difficult

to automate, because the hiihly-structurpd databases must interfate with much less reyi-
mented mechanisms: written and oral communication, multiple incompatible data represen-

tations. psychological ard societal constraints. The monitor, as an information procussing
system, has much more control over the collection of data. since that data is already available

in digitized form, eitncr resident on a bus line or network link, or storod in registers, main
memory, or on disk. certainly in a more convenient format.

The availability of monitoring information results in a second distinction between data col-

lection as performed by conventional database systems and by the monitor: the monitor in

general must contend with massive quantities of data, only a small portion of which may be

-- useful to the user. For example, suppose that the monitor receives a value-time pair for each
change in the program counter. The monitor would have to run on a machine several orders
of magnitude faster than the one being monitored merely to store the information. However, if

only routine timings were desired. the qrain of data will be much coarser. As another ex-

,4 ample, suppose that timings were desired only for a single routine. Unless the data collection

mechanism supports filtering, where only data satisfying specified constraints is actually col-

lected, the monitor will have to contend with data concerning all routines. Extraneous data is

expensive, because computing resources are required to collect it and to decide to discard it.

Thus, data collection for monitoring involves careful selection of data, rather than access and
I conversion to a more useful representation, as in conventional information processing sys-

tems.

4 " - •- i -- i .. .. . . . . ..
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In order to discuss the data collection mechanisms, it is necessary to characterize the

environment in which the mechanism executes. The model employed here has been used in

several recent operating systems [Wulf et al. 81. Jones et al. 78] and languages (Ichbiah et al.
79, Shaw 81], although the model can be used to conceptualize program behavior in any

system [Jones 771. The environment is defined to be a collection of strongly typed objects,

both passive (e.g., data structures) and active (e.g., processes). Type managers export func-

tions to be applied to objects of the type(s) supported by the manager; all operations on an
object are performed by the type manager through well-defined interfaces (implying the exist-

ence of a type-checking mechanism). This model thus identifies the operation being per-

formed on the object by the performer (the type manager) as a result of a request by an
initiator. The user can create new types by defining the representation of the object and

specifying the operations which can be performed on objects of that type. The model applies
to all levels of granularity; in particular, a type manager may be implemented in hardware,
firmware, or software.

Examples of type managers include an encapsulation of a set of routines (c.f., Ada

packages [Ichbiah et al. 79], or a task force [Jones&Schwans 791 or even a data type and

supporting proceduies as found in Pasc2I [Wirth 71]). The more gener:l term used here. type
manager, avoids limiting the model to a particular language or operating system. The model is

especially applicable to inontoring bscaso it forces state changes to be precisely specified:
any change to the representation of a data structure (i.e., object) must occur within a function

of the type manager as a rosult o! perfrming a defined operation. Control flow can also be

characterized in this manner: all changes io the execution state of an active object (a process)
can be accounted for by examining the sequence of operations performed by the process.

There are several properties which should be satisfied by thc data (:cllection mechanism.

The mechanism should support strong typing, in that typing violations are not necessary to

perform the data collection. Multiple type managers should be permitted. The mechanism
should rely as little as possible on cooperation by the type managers, to allow additional data

types and type managers to be monitored easily. The mechanism should be efficient, espe-

cially when disabled. The mechanism should be selective, allowing the monitor to specify
exactly the information to be collected, thereby supporting filtering. The latter two properties
allow many sensors to be included in a task force. Both sampling and tracing should be

possible using the same mechanism. It should be adaptable to different monitoring
granularities. And finally, the mechanism should exhibit good software engineering.

a

I
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5.2. The Mechanism

The data collection mechanism employed in the monitor relies on the type model presented
earlier. An event occurs in the context of an operation as defined in the type model. Infor-
mation concerning an event is collected into an event record, which is potentially of variable
length and which contains both predefined and user.defined fields. Event records are typed,
with each event type being produced by a particular sensor. The sensor collects the relevant
information concerning that event, and sends the information to the remote monitor. Each

sensor is placed in a type manager, and is associated with an operation (or set of operations)
provided by the type manager. For example, the file system (a type manager for the file object
type) may have a ReadFile event sensor located in the code performing the read operation.
Other sensors, such as OpenFile, ExtendFile, PhysicalBlockRead, and ModifyProtection, may
also be present in the file system. Since state changes on a file oblect can only occur as the
result of operations performed by the file system, sensors within the file system can monitor
these state changes for all file objects.

Event records aiways contain the name of the type manager performing the operation (if
the type manager is itself an object), the event type, the name of the referenced object, and
the name of the initiator. Thus, all four components of a state change are recorded for later

• analy-is. Additional information, including the time the event occurred. may alsu be recorded
, in the event record.

Event records are stored in receptacles, which handle the enabling a.d synchronization of

.* event records. Receptacles constitute a bridge between a user-defined type and the monitor:
the sensors re~siding in the type manager for this type use the receptacle to communicate

event records to the monitor. Similarly, the monitor uses the receptacIcs to enable or disable
sensors in the type manager. Receptacles are abstract objects in their own right, whose type
manager is the resident monitor. Events are enabled by the resident monitor by setting
switches in the receptacle. Locks in the receptacle arbitrate simultaneous access and
modification of the switches by the resident monitor and the sensors.

Figure 5.1 shows a portion of two type managers (written in pseudo-Pascal with type
extensions). There are two sensors shown, both in the WriteBlock operation. There are
several operations on receptacles supported by the resident monitor. To install a receptacle in
an object, the type manager for that object requests a receptacle from the resident monitor.

* The type manager then places the receptacle in the object at a location determined by the
type manager. To enable (or disable) an event for an object, the resident monitor presents the

object to the appropriate type manager with a request for the receptacle contained in the
object. The resident monitor then modifies the appropriate switch in the receptacle. There-
fore, the minimum functionality a type manager must provide to support monitoring is the
access receptacle operation and the install receptacle operation. Both of these are straight-

forward to implement (see section 8.3).
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TyoeManager FileSystem

Requires Monitor;
Exports Tvoe File * Record

R: Receptacle:

Private Var TMReceptacle: Receptacle;

Procedure InstallReceptacle (AFile: File) - AFile.R := NewReceptacle(;
Function AccessReceptacle (AFile: File) returns Receptacle = AFile.R;
Procedure WriteBlock (AFile: File; BlockNum: Integer: Contents: Page) -

StoreEventRecord (AFile.R. WriteBlockEventA, BlockNum, ..

StoreEventRecord (TMReceptacle. WriteBlockEventB, ..

End

TypeManaqer Monitor -

Exports Tvoe Receptacle = Record

End;

Fdnction NewReceptacle returns Receptacle =
Procedure EnableEvent (Object: An'L: EventNumber: Integer)AcressReceta.! e(Object).En lerEv-nLJulnber] := true;

Procedure DisableEvunt (Ubject: L'; Eventrl.irber: Integer) z ...
Procedure StoreEventRecord (R: Receptacle; Eventflumber: Integer; ... ) * .

End

Figure 5-1: Skeletons of the Monitor and User Type Managers

Any sensor using the receptacle contained in an object must reside in the type manager for
that object. When such a sensor is encountered during the processing of a requested opera-
tion, the event identification, object name, initiator name, performer name, and receptacle, as
well as any additional information provided by the sensor, is passed to the resident monitor,
and a store event record operation is performed by the resident monitor. First the appropriate

enable switch in the receptacle is checked to ensure that the event is enabled for this recep-
tacle. If so, an event record in the proper format is then sent to the remote monitor.

Placing the enable switches in the receptacle allows great flexibility in the enabling of
events. Receptacles are associated with both passive and active objects. A receptacle as-
sociated with a passive object arbitrates the collection of monitoring information for that
object. Enabling the file read event tor the receptacle associated with a particular file causes
event record to be collected for file reads only for this file by any file system process. On the
other hand, enabling the file read event for the receptacle associatcJ with a particular file
system process causes event records to be collected for file reads on any file performed only
by this file system process. In the example in Figure 5-1, WriteBIockEventA is enabled for a
particular file by enabling the event in that file's receptacle. To enable WriteBlockB, the
receptacle associated with the type manager (TMReceptacle) must be modified.
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The placement of the receptacle allows the event records to be filtered along three dimen-
sions: by object, performer, or initiator. Each sensor supports filtering of an event type in only
one dimension. However, several sensors (and event types) can be associated with an event
occurrence (such as file read), each designating a different receptacle to arbitrate event

* record generation by the sensor. Viewing the set of possible event records as a discrete
four-dimensional space with axes consisting of event types, objects, performers, and in-

* itiators, the event records generated by a particular sensor form a two-dimensional plane,
parallel to two of the axes, and intersecting the event axis and one other axis. The event
records enabled by a particular receptacle form a series of two-dimensional planes, all paral-

* lei yet intersecting the event axis at different points12

Higher degrees of filtering are also possible. A line in the event space represents enabling
events on combinations of two of the components of the operation, such as a file read by this
file system on this file. A point represents total control over which event records get

* generated: a file read by thi~s file system process on thuis file, as requested by this initiator.
* Achieving higher degrees of filtering requires either additional information to be stored in the

receptacle, and additional processing to determine if the event is indeed enabled, or new
receptacles representing component pairs or component triples to be created and associated
with the participating objects. Both alternatives require greater than linear space and/or time

* in the number of objects, and thus are unacceptable in an environment Supporting many
objects.

The typing model applies to all levels of abstraction, from the hardware (with objects such
as memory locations, interrupt lines, device registers), the firmware, the language level (with
objects such as variables, semaphores. procedures), to the process level and the program
level (with objects such as servers, databases, users). The data collection mechanism can be
used at all of these levels, presenting a consistent interface to the rest of the monitor: event
records containing the event type, object, performer, and initiator, as well as other, event-
specific, information. By associating receptacles with the objects defined at a particular level
of abstraction, the full filtering capabilities can also be realized. However, the implementation
will differ from level to level, and thcre must be ways to transmit the information gathered at

* the lower levels, especially at tMe hardware and firmware levels, to the higher levels where
they can be dealt with by the monitor. Chapter 8 will describe an implementation at the
language/ process level.

12Apoint in this space may include several event records, each representing the same event. object, petformer,
6 and initiator, but occurring at different times. Of course, time could be considered as yet another dimension.

Visualizing the event space is more difficult with such a change; the author finds four dimensions hard enoughl
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5.3. Integrating Sampling and Tracing

In the preceding discussion, the assumption was made that the event record is sensed and
communicated to the remote monitor when the event occurs. Such event records are called
traced event records, since their generation is synchronous with the event, and thus with the
operation whose object, performer, and initiator is named in the event record.

Sampled event records, on the other hand, are generated at the request of the monitor,
asynchronously with the event. As an example, a sensor located in the scheduler of an
operating system could generate traced event records pertaining to context switching:
process x started running at time t1, process y started running at time t2, etc. Another sensor
located in the scheduler could generate sampled event records at the request of the monitor:
process z is now running.

In the context of the type model, both sensors were executed as a result of an operation
supported by the scheduler; the former by the dispatch operation, the latter by the "report
current process" operation. The only distinction is the nature of the initiator-, either a random
process in the system. or the resident monitor. As far as the low level data collection
mechanism is concerned, there is absolutely no difference between sampling and tracing: the
sensor, when encountered in thC Course of executing the operation, checks the enable switch
in the appropriate receptacle. and, if set, sends the event rocord to the remote monitor. Of
course, the higher levels must trevt sampled even, records somewhat differently than traced
event records, although section k~.2 presented evidence that these differences are not as
fundamental as previously thought.

There are several means by which the resident monitor Mray request sampled event recods
to be generated by the user's type manager. The most obvious method is to have the user
provide an entry point for the monitor. The process would then wait to be invoked, either by
another user process or by the monitor. Another method is to have the resident monitor
simply set an enable flag in the receptacle, and assume that the user process regularly checks
this flag. A useful mechanism designed for this case is a one-time -enabie flag in the recep-
tacle. If this flag is set, the next time a particular event record is generated. the event will be
disabled, thereby allosing exactly one event to be detectected. A third technique, sharing
aspects with the other two, is to send the user process a message when sampling is desired.
Although this technique assumes that the process regularly checks a particular mailbox, the

* sampled event record could be generated while the user's process is performing another
function. All three techniques involve the special code in the user's process, yet most of the
added complexity is where it should be: in the monitor rather than in the user's (i.e., type
manager's) code.
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5.4. Other Uses for Receptacles

Since receptacles are the primary means of communication between the resident monitor

and the suer's application processes, it may be desirable to add fields to receptacles for
sending information other than event records to the resident monitor. Placing counters in
receptacles can eliminate the overhead of generating the event records. Counters are also

useful for keeping track of the number of missed events, or for accumulating an estimate of
the processing overhead of generating events. Other possible aggregation mechanisms in-

clude histograms and higher moment generators. The primary requirement for an aggregation
operator implemented in this way is that the state change of the aggregate function (such as a

sum) can only depend on the current event (e.g., the value to be added to the sum) and the
current state of the aggregate (e.g., the current sum).

Counts and sums can be quite useful in themselves. The values of the counters at a
". particular point in time as well as the behavior of the values over time can be very informative.

Most raw measurements on Cm* in the past have consisted purely of counts and

sums [Jones&Gehringer 80, Dannenberg 811.

5.5. Interaction with the Remote Monitor

Since the remote monitor contains a large knowledge base concerning monitoring, it is
important that it be system independent. If the remote monitor had to be desiqned and imple-
mented from scratch for each operating system. then much of the effort would be expended
getting a minimal set of functions working correctly, rather than enlarging a common
knowledge base. Hence, the remote monitor's view of the world is an abstraction supported

by the resident monitor interacting with a particular operating system with certain assump-
tions being made about the event records being generated. These assumptions may be easy
to satisfy in one resident monitor, yet difficult to satisfy in a different resident monitor, where

*the operating system supports rather different functions. There is a tradeoff between strong

assumptions, which are difficult to support by the resident monitor, and weak assumptions,
which make the derivation of high level information from event records difficult. This section

is concerned with the environment as seen by the remote monitor, and how this view is

supported.

The format of the event record is one aspect to be standardized. Each event record is

divided into a fixed and a variable part. The fixed part is identical in format in all event
records, and included the event number, the (possibly nil) names of the initiator, performer,

and object, and (possibly) a timestamp. The variable part contains the values from domains of
the event record, i.e., the additional information provided by the sensor. Domains must be

*i formatted in a defined external type (currently either a short integer, a long integer, a variable
length character string, or a remote name; see section 5.5.1), with the sensor mapping values

S
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in an internal format to an external type. Names and timestamps are much harder to stand-

ardize; the rest of this section will describe our approach to these two issues in the context of

data collection.

5.5.1. Naming

Who hath not owned, with rapture-smitten frame,
The power of grace, the magic of a name?

--Thomas Campbell, in Pleasures of Hope

There are several name spaces within the monitor for objects supported by the operating

system: this section is concerned with internal names (the ops.rating system specific names),
remote names (system independent names which are processed by the remote monitor), and

the mapping between these two name spaces. Other chapters will deal with the remaining
name spaces active in the monitor.

Internal names allow the resident monitor to gain access to the object in question. The
internal name for a file may be the disk address of its directory entry, or the inod& number in

the case of Unix files [Ritchie&Tlhompson 74]; thi internal name for a process might be a
memrory address ot a process control block, or an offset into the procus. table. Object-based

systems allow a connistent namir.g scheme to be used: the operating system supports the
addressing of all objects by using a name in a standard format. These names are usually
protected. so that processes mu.st acquire names, rather than being allowed to arbitrarily

generate them. StarOS [Jones et -1. 78] and Medu.a [OustErhout et al. 801, the two operating
systems the monitor was implemented on, are both object-based systems; internal names are

called capabilities and descriptors, respectively. A remote name is an integer which can be
mapped to an internal name, thereby allowing the actual object to be referenced by the

resident monitor.

I
It is helpful to examine briefly how names in these two name spaces are used by the

monitor. When the monitor starts, it knows no names. 1 he user issues ;i query, and the
remote monitor instructs the resident monitor to find certain objects and to return the remote
names of these objects. At that point, the remote monitor sends some of these names back to

the resident monitor, instructing it to enable certain events on those objects. A3 these events
subsequently occur, event records containing the remote names are sent to the remote
monitor.

In order for this interaction to occur successfully, several invariants concerning remote
names must be guaranteed:

Uniqueness - Remote names must be unique (one remote name for each object) for

event records to make any sense at all.
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njectivity Remote names must be unambiguous (one object for each remote

name), for the same reason.

Bidirectionality The mapping must be bidirectional; in particular, the resident monitor

must be able to find the object given a remote name.

Completeness When an event record is sent to the remote monitor, the remote name

for the object, the sensor, and the initiator must be available.

Lifetime The mapping must allow operating system objects to be garbage col-

lected.

Unfortunately, there :s no mechanism for producing remote names which will satisfy all five
invariants, although different mechanisms violate different invariants. Assume we have a
remote name for an object. We can either

* not allow garbage collection, or

* allow garbage collection, and violate the hidirectionality invariant (if the object is

deleted, we cannot map the remote name to an internal name), or

* violate the injectivity invariant (map the old remote name onto a nw object which

has the same internal name as the old, deleted object).

The second and third alternatives apply to operating systems not supporting a consistent,

protocte d internal name space. For example, the disk address of a file m;lay be a va'lid name

for the file while it exists (assuming the directory is not reorganized). However, there is no

guarantee that the file will not be deleted and the entry replaced with that of another, newly

created file.

The approach adopted here applies to object-based operatin systems, and will support

capability addressing at the expense of a slightly corrupted bidirectionaity invariant: some-

times the mapping from the remote name to the internal name will not work. To see how this
is done, we must first explain the mapping between internal and remote names.

0 Although each internal name at any given time is bound to at most one object, an internal

name will in general be bound to a series of objects. Each time an object is garbage col-

lected, the internal name no longer refers to that object, and the time period the binding was
in effect, called the epoch, is ended. Since each remote name must be associated with a

unique object, the remote name will consist of two components, the internal name and a
0 designator of the epoch, to disambiguate the internal name. Remote names will be of the

form <epoch>(minor name>. The <mirnor name> will be formed from the internal name in a
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system-dependent fashion (this does not circumvent protection, since the internal name may

be read, but not written). The <epoch> for a particular <minor name> is an integer initialized to

zero an incremented each time the object associated with the <minor name> is garbage

collected. Whenever an event record is constructed, the current <epoch> for each

<minor name> in the event record will be concatenated with the <minor name>, thereby form-
ing a remote name.

The resident monitor will maintain a list of internal names it has collected from the event
records it has sent to the remote monitor. Whenever a remote name is sent to the resident

monitor, the associated internal name will be retrieved using the <minor name> field. When-

ever an object is deleted, the <epoch> for the <minor name> for that object be incremented, to

ensure that the next object created with this internal name will be mapped to a unique remote
name. Note that interaction between the garbage collector and the resident monitor is re-

quired to keep the <epoch> values consistent.

The mechanism outlined above satisfies all of the invariants except the garbage collection
invariant. As long as an internal name resides in the resident monitor. the object it refers to

cannot be garbage collected. Having many internal names in the resident monitor imposes an

unnecessary processing and memory burden on the syStem. Therefore the mechanism must

allow internal names to be removed from the resident monitor.

Stated simply, an internal narie shouLd be rerroved if it will never be needed -gain 13 . Since
it is impossible to predict vhen this will be the case, various approximations may be used:

* the object has an explicit dcstroy operation performed on it;

& there is only one internal name (the resident monitor's) referencing this object

(and thus, the object is nonexistent as far as the rest of the environment is

concerned);

e the remote monitor will never send the remote name to the resident monitor in a

* request (or, as a weaker predicate, the remote monitor doesn't have a remote

name for this object);

* it has been a long time since an event record has been generated;

a the user has specified that this object is unimportant (or equivalently, has not

specified that this object is important);

13 Put another way, all the invariants can be satisfied given an omniscient fesident monitorl

I . mm • i
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. the object is of an unimportant type (or equivalently, is not of an important type).

The first alternative applies only to objects which have a destroy operation that can be
monitored. The semantics of the destroy operation from the monitor's point of view is that,

after the operation has been performed, nothing interesting will ever happen to this object,
i.e., no event records containing a name for this object will ever be generated. The second

S'. alternative depends on a garbage collector which can determine whether there is only one

extant internal name; garbage collection using reference counts would admit this alternative.
The third alternative requires garbage collection of names in the remote monitor, effectively

extending the capability name space to include the address space of the remote monitor. The

last three heuristics depend on psychological aspects, and thus require human factors experi-
ments to determine their effectiveness.

5.5.2. Time

A person with one watch knows what time it is;

a person with two watches is never sure.

-- Proverb

Time is a difficult problem when monitorinq a distributed system. The event rmcords con-
tain times relative to thle local ciock of the processor on which the event occurred. In general,
the local clocks cn physically separate processors will be arbitrarily out of synchronization.

Unfortunately, it is theoretically impossible to synchronize imprecise physical clocks over a

geographically distributed network with nondeterministic transmission times [Lamport 78]. A
rmore practical constraint is ensuring that the overhead incurred in synchronizing the local

clocks remains acceptably low.

There are at least three possible approaches to the local to global time mapfping: (1) the
mapping is done by a distributed algorithm in the system being monitored; (2) the mapping is

done in the remote monitor, using local times sent from the resident monitors: or (3) the
remote monitor uses only local time in its calculations. Option (3) was rejected immediately

because it would disallow queries involving interactions between processors, which is the
reason behind having a distributed monitor in the first place.

0 Option (1) can be accommodated easily using the Lamport algorithm. The time-keeping

algorithm can be embedded in the operating system itself, with timestamps appended to every
message, or in the monitor, with timestamps included in messages sent by the monitor. Note
,Mat the monitor may be able to adequately maintain a global clock with few additional mes-

,.(jes The most obvious algorithm for option (2) is to simulate Lamport's algorithm in the
* "'m(,t9 monitor. This approach incurs a greater overhead than Lamport's algorithm itself, due

Si ditional communication necessary. Another consideration is that if the operating

0
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system provides a reliable communication mechanism, supporting recovery from lost mes-
sages or crashed processors, then a global clock is probably already computed by this
mechanism (e.g., [Nelson 811); all reliable communication mechanisms known to the author
use some kind of global clock.) In any case, if a global clock is provided by the monitor, other
components of the operating system may profit from its presence.

The global clock will of necessity have some error; the maximum skew can be bounded in
Lamport's algorithm. Lamport's algorithm also has the property that it preserves the partial
ordering of message transmission followed by message reception. The partial ordering
necessary for debugging will be preserved and the (unknown) total ordering will embed this
partial ordering. The semantics of TQuel explicitly incorporates a skewed global clock.

Given these considerations, we will assume that a global clock is implemented by a dis-
tributed algorithm, and is available to each resident monitor. If such a clock is not feasible
due to efficiency constraints, as in some real-time systems, then more sophisticated ap-
proaches, yet to be developed, are necessary.

5.6. Summary

This chapter first presented a model for the environment the data collection mechanism
was to execute in, the type model, and then a mechanism which relies on this model. The
occurrence of an event is tied to four components: the operation, the otbject being operated
on, the performer of the operation, and the initiator of the operation. These components are
recorded in the event record generated by the sensor, along with additional information ger-
mane to the event. A new type of object, the receptacle, was introduced to arbitrate the
generation of event records, and great flexibility in filtering was shown to be possible by
associating the receptacles with the various entities participating in the event. We
demonstrated that, from the point of view of the sensors, there was absolutely no difference
between traced and sampled event records, the distinction lying instead in the identity of the
initiator of the operation involving the sensor. Finally, several issues involved with the inter-
action of the remote monitor, in particular naming and time, were discussed, and techniques
were developed for coping with the problems inherent in those areas.

At this point, it is possible to answer the query of chapter 2,

Problem: Is it possible to provide effective data collection mechanisms?

with a resounding Yesl:

Result: After examining the type model, a data collection mechanism was
designed that supports a high degree of filtering, integrates sampling and tracing,
and admits solutions to the problems of naming and time.
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* Throughout this chapter, we have assumed that any mechanism we can devise to over-
.. come the problems of data collection in a distributed, strongly typed environment could be

used effectively by higher levels of the monitor, so that the user is still presented with a simple
relational query language interface. This assumption results in an extension of the next
problem raised in chapter 2 that is now somewhat harder to solve:

Problem: How can the dynamic incremental updating of temporal relations be
implemented effectively, and in such a manner that the facilities supplied by the

data collection mechanism are also used effectively?

6

4



.7.

b- 77

Chapter 6
The Update Network

As discussed in previous chapters, event records are generated by sensors, collected by
the resident monitor, and eventually sent to the remote monitor for further processing. The
user specifies the nature and extent of this processing through queries in TQuel, a high level,
nonprocedural language. This chapter describes in detail the target of the query translator:

an update network. The translation of the query into an update network is the topic of the next
chapter.

Current relational database systems provide constructs for deriving new relations and for

modifying existing relations through the addition. removal, or modification of individual tuples
or collections of tuples satisfying some predicate [UlIman 821.'A derived relation may or may
not be modified when an underlying relation is modified. If the relation will not be modified
(the normal situation), then the derivation is pet-formed once and a new relation is created. If
a derived relation is to reflect the changes made to an underlying relation, then a different
implementation strategy is used. The relation, called a view, is never actually computed.
Instead, a query involving a view is modified by the database system to operate directly on the
underlying relations, merging the operations specified for deriving the view with the opera-
tions specified by the query. Since the underlying relations are accessed whenever a query
refers to theview, the data is guaranteed to be current.

Due to the dynamic nature of a temporal database, neither approach is appropriate. Instead

of first collecting the primitive relations and then performing queries on them to produce
.4 Jerived relations, the system should process the tuples as they become available, for two

reasons: the monitor can perform the collection and computation in parallel, and the derived
information can be presented in (somewhat delayed) real-time. The first reasons relates to
efficiency' the second one to efficacy.

44

II
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6.1. Incremental Updating of Temporal Relations

Incremental update algorithms for temporal relations accept information in the form of "this
relationship between these entities was true for the period from the time tj through t2", and
use this information, plus stored information concerning the relation, to derive an updated

* relation. Relations evolve in time through tuples (rows of a relation) being added and
removed. These changes cause relations derived from a relation to acquire or lose tuples of

* their own, a process continuing until the new information has been completely assimilated by
the relations defined in the system. It is thus natural to concentrate on the flow of tuples
(being added and removed) among the relations that are associated with each other through

TQuel queries. This viewpoint results in an implementation which is substantially different
from those of conventional data base systems.

The monitor will process the tuples using an update network produced from the user's
* query. The update network is specified as a directed acyclic graph (dag). The nodes in this

graph are classified as either access or operator nodes. Information in the form of tuples
* . flows out of the access nodes (which communicate with the resident monitor) and through the

network. Operator nodes take tuples from one or more lower nodes and produce tuples
which will be sent on to other nodes. The entire network is driven by tuples originating in the
access nodes.

It is important to recognize that two radically different paradigms are at work. One
paradigm was introduced in chapter 2: the process of monitoring is profitably conceptualized
by the user as the collection of time-varying relations which can be manipulated by a tem-
poral, non-procedural query language. The paradigm introduced in this chapter has a dif-
ferent scope: the process of monitoring is profitably structured by the upper levels of the
monitor as the creation and execution of a specialized update network which processes the

* information collected by the resident monitor.

This network approach emphasizes the flow of information from the sensors (access
nodes) to the user. Intermediate relations are not explicitly represented in the network; in-

0 stead, a relation consists of all the tuples appearing at the output of a particular node while
the node is in the network. Operator nodes which store and retrieve long-lived relations, and
which display relations, are provided. The instantaneous snapshot of each relation is partially
contained in the internal state of the node computing that relation.

40 The update network provides an implementation of the TQuel retrieve statement, and is
therefore procedural by design. The tuple calculus semantics of the Quel (and TQuel)
retrieve statement as presented in the previous chapter is non-procedural, also by design.
The connection between the two formulations can be seen by considering a third formulation:

* an alget~-a on relations. Recall that the tuple calculus statement for the following skeletal
Quel statement
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range of tj is RI

range of tk is Rk
retrieve (ti . D1  tr . D)
where

was

"ur 0 I .(.t) . (3tk)(Rl(t1) A ... ARk(tk)

A u[1] = t [iA ... A u[r] = ti[Jrl

(Recall that Dm is the imth attribute of the relation Rim) . The relational algebraic formulation for

the same Quel statement is

-ii¢(i,.,,(R, XR X. .. x Rk)), where a ti.D .... tr.Dr

which forms the cartesian product of the underlying relations (R, x R. x ... xRk), applies the
appropriate selection (r,.), and projects the desired domains (we). It can be proved that
each tuple calculus statement has an equivalent relational algebraic statement [Ullman 82]. In
general, however, the relational algebraic statement is much easier to implement.

The relational operators can be augmented to support the features in TQuel. The projection
operator may be used to select the implicit time domains as specified by the start, stop, and at
clauses. The selection operator may be used to select tuples satisfying the when clause.
Hence, the TQuel retrieve statement

range of t, is R1

range of tk is Rk
retrieve (t11 .D1  .... . tjt.Dr)
where 4r
when T
start u
stop X

has the associated relational algebraic form

X R 2 X ... x R))), where a' =, . r.Dr

The parse tree of this expression is shown in Figure 6-1. The update network is a modified
version of this tree. The operators correspond to the operator nodes in the network, and the
tuple variables associated with the primitive relations correspond to access nodes.
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Projection

I Selection

Selection

Cartesian Product

Relation Cartesian Product

-" Relation"

[ Relation

Figure 6-1: Parse tree for the relational algebraic expression for the skeletal
TQuel retrieve statement
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6.2. Generic Nodes

The access and operator nodes present in the update network are instantiated from a set of
predefined generic access and generic operator nodes. Some of the operator nodes have
parameters, equivalent to the subscripts shown in the relational algebra. For instance, the
projection operator takes as an argument a list of the domain to be projected.

6.3. Access Nodes

Access nodes are the mechanism by which information collected by the resident monitor
enters the update network. Each generic access node is associated with an event type, and
thus with the set of sensors generating event records of that type. Access nodes are instan-
tiated from generic access nodes, and are placed in the network. When a sensor generates
an event record, the appropriate tuple is placed on the output arc of all access nodes instan-
tiated from the appropriate generic node. At this point, the tuples start flowing through the
network and the processing commences.

Since the access node is the counterpart of the sensor in the network, it must have total
control over the sensor. In particular, the access node must in some way determine

9 which sensors or objects are enabled, and

* when samples are to be taken (if the event is sampled).

A second restriction is that the control functions of the access nodes must interface cleanly
with the general paradigm of tuples flowing in the network. Both functions are accom-
modated using additional input arcs.

The approach taken to control enabling is to add input arcs to each access node. One
input arc (called the enable arc) determines the object, performer, or initiator to be enabled
(see section 5.1). Tuples flowing on this arc are assumed to be events with one domain
containing the name of an entity (object or process). A start event specifies the entity to be
enabled; a subsequent stop event specifies that the entity is to be disabled. Note that there is
a potentially long delay before the tuple actually arrives at the access node, since the tuple
was the result of an arbitrarily long sequence of calculations. Hence enabling an event based
on the occurrence of a different event cannot be guaranteed to be timely in all cases.

If the access node is associated with a sampled event, a second input arc (called the trigger
arc) determines when sampling is to occur (trigger arcs are not necessary for access nodes
associated with traced events). Whenever a tuple arrives on the trigger arc, a command is
sent from the access node to the resident monitor to perform the sampling. The one domain
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of the tuple specifies which object is to be sampled. Again, there is the proviso that a delayed
trigger tuple will cause the sampling to also be delayed.

The two types of input arcs (enable and trigger) can be merged into one by specifying the
semantics so that a start event enables the event on the object (for a traced access node), a
stop event disables the event on the object (also for a traced access node), and either causes
a sample to be taken for a sampled access node. In this characterization, the one input arc is
called the control arc.

The present e of the control arc on the access nodes allows the monitor to construct
subnetworks to compute the entities to be enabled and the samples to be taken. By allowing
these functions to be performed in the same manner as the calculation of derived relations,
the mechanisms already present for manipulating these networks can also be applied to these
areas. In particular, the optimization strategies discussed in section 7.2 are completely ap-
plicable to the subnetworks controlling the enabling and sampling activities of the access
nodes they are connec.ed to.

6.4. Operator Nodes

Operator nodes perform the computation on the event records flowing from the resident
monitor. Some nodes compute new domains in the output tuple from existing domains in the
input tuple; the rest map the input domains to the output domains in some fashion. The
algorithms in the operator nodes, while performing standard relational operations such as join
and projection, are nevertheless quite different from their static database counterparts, since
they have been tuned for the incremental update of temporal relations.

There are abo ut a dozen generic operator nodes, varying greatly in complexity. Appendix
C describes each in more detail.

6.5. Node Interconnection

In order to process the tuples, the access and operator nodes must be instantiated from the
available generic nodes and combined into an update network with the arcs corresponding to
paths over which the individual tuples flow. Three primitive constructor functions are

41 provided. The create operation

(create genericnode name (param1 ... paramn))

creates an instantiation of the genericnode with the specified instantiation parameters and
associates the name name with it. The link operation

(link fromnode tonode side)

creates an arc from fromnode to the side of tonode. The side is either left, right, or control

U
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(see section 6.3). The update network must be a directed acyclic graph (dag); the link opera-
tion ensures that no cycles are created. The third operation

(unlink froninode tonade)

simply removes an arc from the update network. Nodes are garbage collected by the unlink
operation when the last arc is removed.

These operations, along with the predefined collection of generic nodes, define the update
network abstraction as seen by the query translator. Specifically, the code generated by the
translator is a sequence of create, link, and unlink operations. There are two remaining
issues pertaining to the update network: how is the network abstraction supported
(considered in section 8.6), and how is the query translated into an update network (dealt with
in the next chapter). At this point, the problem given in chapter 3:

Problem: How can the dynamic incremental updating of temporal relations be
implemented effectively, and in such a manner that the facilities supplied by the
data collection mechanism are also used effectively?

is reduced to a result and a smaller problem:

Result: An update network can be used to implement dynamic incremental
updating of derived relations. The network is composed of access nodes, which
interface elfectively with the data collection mechanism, and operator nodes,
which carry out the desired computations.

Problem: How can the update network be implemented to efficiently process
the incoming event records?

The next problem to be faced is now more specific:

Problem: How can the knowledge contained in the monitor itself and in the
incoming event records be used to direct the translation of user queries into ef-
ficient, correct update networks?
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Chapter 7
Generating the Update Network

The remote monitor has two primary functions - generating an update network from the
user's query, and executing the update network to process event records flowing in from the
resident monitor. The update network must be correct and it must be efficient. Update net-
work generation is therefore a vital aspect of monitoring and, to be effective, should use all
the knowledge present in the monitor. The network generation component has two sources
of knowledge: the information contained in previously processed event records, and the
knowledge embedded in the monitor's algorithms. The purpose of this chapter is to describe
how these two sources of knowledge can be applied to the task of generating the update
network.

7.1. Generating an Initial Network

The query is parsed by a LALR(1) parser generated from the TQuel grammar by the yacc
parser-generator [Johnson 75], building a standard parse tree. Semantic analysis consists of
resolving the names for tuple variables, relations and domains, type-checking the expres.
sions, and inserting semantic information into the tree. The parse tree is then converted to a
relational operator tree (or, equivalently, an initial update network, see section 6.1) by the
following process, illustrated using the following query from section 3.7:

retrieve Catch
where A.IterNum - B.IterNum
when A.start; B.start

4 at B.start

1. Collect all the referenced tuple variables.
Two tuple variables appear in this query: A and B.

2. Build a tree of Cartesian Product operator nodes of all the relations associated
with the referenced tuple variables.

The tree is quite simple: A X B, requiring one Cartesian Product operator
node.

3. Create ApplyOp operator nodes for all expressions in the parse tree, except those
in the where and when clauses.

IBLANK A
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There are no such expressions in this query.

4. Create a series of Selection operator nodes, one for each disjunction in the where
clause, after converting the where clause to a conjunction of dislunctions (normal
form1 )

The where clause is already in normal form, requiring one Selection operator
node.

5. Create one or more Selection operator nodes for the when clause, after convert-
ing to normal form.

The when clause is already in normal form, requiring one Selection operator
node.

6. Create a Projection operator node from the target list of the parse tree, including
the at, start, and stop clauses.

The projection node will extract only one domain, Catch.start.

The resulting initial update network is shown in Figure 7-1. The update network produced
* by this process is not quite complete. The rest of this section will discuss the modifications

required for semantic correctness.

7.1.1. Universal Relations

As discussed in section 6.3, the control arc is included on access nodes to determine which
objects are to be sampled or traced. The monitor must attach a source of objects to the
control arc of each access niode in the network; otherwise, no events would be enabled, no
samples would be taken, and no event records would be generated. For this purpose, a
universal relation is defined for each ohiect type. A universal relation contains exactly one

- . domain denoting the set of objects of a given type known to the monitor. Whenever the
monitor is informed of a new object, the object is added to the appropriate universal relation.
The control input of each access node is connected to a universal relation determined by the

* type of the access node. An access node associated with a sensor in the file system would
have its control input connected to the universal relation of file system processes. If the

* sensor was instead associated with a file object, the control input would be connected to the
universal relation of files.

* Connecting a universal relation to the control arc of each access node implies that, for
each primitive relation referenced in the query, all relevant objects known to the monitor will
have the associated sensor enabled for the object. Sometimes this is desired; for example,

14 The multiple Selection operator nodes provide flexibility in the optimization phases described later.
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determining the system utilization requires context switch events to be enabled on all the

processes in the system. In general, however, the monitor must be much more selective in
which sensors are enabled, with the selection criterion extracted from the query itself. This is

done by first attaching the universal relation to each control input, assuming initially that all

sensors are to be enabled. Then, the update network corresponding to the query is converted

into a more efficient one using a collection of transformations discussed later. The new up-

date network will probably have an entire subnetwork replacing the universal relation con-

nected to the control input. In particular, selection nodes are migrated down toward the

access nodes, often coming to rest below the access node in the subnetwork connected to

the control input. Examples of this optimization will be given later in this chapter.
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7.1 .2. Compensation

Compensation is necessary because the act of monitoring usually perturbs the system
( under study. For instance, the monitoring of processor utilization may decrease the utiliza-
* tion, since some of the processing involves monitoring rather than running user jobs. If the

monitor has some measure of the perturbation the monitoring of each event has on the other
* events being monitored, it can compensate by correcting for this perturbation.

Although it is impossible to compensate totally for the operation of the monitor, it is some-

times feasible to perform a few gross corrections. For instance, by knowing how much

processor time went into generating event records, the monitor can adjust the computed
processor utilization in a straightforward manner. The monitor can determine the ap-

q proximate overhead of event record generation using the potentially large amount of infor-
mation it has on its actions:

* which sensors executed when (from the event records themselves);

-i * how much data wias collected (also from the event records);

* the internals of the sensors (from the descriptions of the sensors); and

* the effect each sensor has on other sensors (presumably also from descriptions

of the sensors).

The monitor, when generating the update network from the user's query, may add special
compensation operator nodes to the network. The information from the sensor descriptions
is available at network generation time; the information from the event records must be
derived dynamically from the tuples as they flowed into the compensation node. Thus, one

* input to the compensation node would be the tuples tc be compensated (the primary tuples);
the other input(s) would be for the (secondary) tuples, whose collection oerturbed the values
of the primary tuples.

As just described, compensation nodes would not work, for there would always be the
possibility (actually, the probability) that the primary tuple would have come and gone before
the secondary tuples arrived at the compensation node. There are at least two solutions to
this problem. In one approach, the network itself would ensure that the tuples arrived in the
correct order. It is unclear how the network would enforce the correct ordering. The other
approach is at the other end of a local-global spectrum: instead of adding complexity to the
network, the nodes requiring a specific ordering of the incoming tuples would achieve that
ordering internally. In this approach, the compensation node would store the primary tuples

4 until the correct secondary tuples had arrived, and then output the corrected primary tuples.
The latter approach was adopted here, for reasons to be given later.
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Unfortunately, this approach introduces another problem. The remote monitor receives

tuples periodically as they are retrieved from internal buffers (i.e., the receptacles) within the

system being monitored (see section 5.2 and appendix D). The tuples are then sent to the
appropriate access nodes for insertion into the update network. Due to the presence of
multiple buffers and the unspecified manner in which these buffers are emptied, the incoming

tuples are arbitrarily ordered in time. In particular, the differences in time between sub-
sequent tuples can be arbitrarily large, since some buffers fill up very quickly (say, every

second) and others quite slowly (say, every hour). This situation implies that the compen-

sation node must at any point be prepared for a secondary tuple arriving much later than a
primary tuple. Primary tuples must be stored indefinitely in preparation for such a possibility.

There are two possible solutions to this dilemma. One solution is to have the resident
monitor remove event records in an orderly fashion so that the buffers are emptied regularly
and the tuples can be ordered. The other solution relies on the generation of checkpoint

tuples to aid in the temporal ordering of tuples. Since the latter solution does not put any
restrictions on the gathering of tuples by the resident monitor, and allows the temporal order

to be changed at will in the update network, it was adopted in the implementation.

7.1.3. Checkpoint Tuples

A checkpoint tuple has the semantics that all tuples of a particular class following the

checkpoint tuple will have a time value after that of the checkpoint tuple. A class might

contain those tuples of a particular event type, or those tuples pertaining to a particular object
or sensor process, or those tuples generated on a particular processor, or even all the tuples
generated by the system, depending on how the buffering and movement of tuples was imple-
mented in the resident monitor 5 . Most operator nodes simply echo checkpoint tuples on

their outputs. Binary operator nodes must generate output checkpoint tuples as a function of

checkpoint tuples from the two inputs. To preserve the semantics of the checkpoint, each

binary operator node behaves in the following manner. First, the node accepts and stores
tuples from both inputs until a checkpoint has been received from both. Assume that the left
input had a checkpoint at t, and the right at t2 , with t! < t2 . Also assume that the last

checkpoint tuple output by this node had a time to. The node processes all the internally
stored tuples in [t0 , t1) , then outputs a checkpoint tuple with a time t1 . All tuples from both
inputs with times less than t, are purged from internal storage, and the processing continues

by again accepting input tuples.

It is useful to examine how checkpoints relate traditional and temporal databases. A tradi-

tional static relation, which models reality for an instant or period of time (after which it is
updated to model the revised reality), is simply the subset of the tuples of a temporal relation

15 1n both resident monitors implemented to date, a checkpoint applies to the entire system.

I.
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valid during that instant or period of time. Checkpoints break the stream of tupies into con-
secutive intervals, with tuples in a particular interval all generated after one checkpoint and

-before the next. The Cartesian product operator performs a series of somewhat conventional
Cartesian products over these intervals. Tuples in one interval from the left input will be
concatenated with overlapping tuples in only a few intervals from the right input16. The
overall effect is to divide the relation temporally into Intervals, and apply the operations to one
interval at a time.

One issue still remains: when are checkpoint tuples generated? Internal storage require-
ments in the resident monitor dictate that checkpoints be generated regularly In short time
intervals. Also, because tuples are potentially delayed until the next checkpoint, respon-
siveness to events enabled by tuples flowing into a control input of an access node from lower
in the network demands that checkpoints come often. However, since checkpoint tuples

* themselves require processing resources, they should not be generated too often. This trade-
off is complicated when checkpoints are associated with classes of tuples, instead of having
each checkpoint refer to the entire system. The optimal frequency of checkpoints is in
general a function of the storage capacity of the resident monitor, the tuple processing
capability of the update network, the responsiveness desired by the user, and the previous
tuples generated by the operating system and user programs. It is desirable to have the
update network have control of this aspect, as it does with event enabling and compensation.
One way to control the checkpoint frequency is to provide a unique checkpoint access node.
Whenever a tuple arrives at the control input (see section 6.3) of this access node, a com-
mand would be sent to the resident monitor to generate a checkpoint. By connecting a clock
access node to the checkpoint node, checkpoints would be generated regularly. More
generally, this arrangement allows checkpoints to be generated as a result of arbitrary
processing of event records. A checkpoint tuple would then be similar to a sampled event,
with rather unique semantics for the update network. The approach taken in the current
implementation is to instead simply generate checkpoints regularly, every few seconds, as

- . specified by the user.

7.1.4. Other Details

The semantic analysis must also concern itself with several issues which, although

* straightforward, nevertheless should be mentioned:

*The aggregate operator node (see appendix C) assumes the presence of domains
indicating (a) which partition the tuple is a member of, (b) the value of the expres-
sion the aggregate is to be applied to, and (c) a Boolean indicating whether this
tuple is to be included in the aggregate, corresponding to the by clause, expres-

is This is actually a simplification; see section 7.2.3 for the full story.
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s-on, and where clause, respectively, In the aggregate clause (see section 3.6).
These domains may already exist in the tuple, or they may need to be computed
by ApplyOp operator nodes lower in the network. Appendix C, in its discussion of

the AggrOp operator node, includes an example illustrating the use of an Ap-
plyOp operator node to accommodate a where clause.

, If a start or stop clause is omitted, the default (see section 4.5.2) must be Inserted

into the parse tree before the update network is generated.

S-The operator nodes expect domain indices as arguments, rather than domain

names. Thus, the semantic analysis must keep track of the number of domains
and the content of each domain of the tuples flowing over each arc of the net-
work. This accounting is complicated slightly by those operator nodes that com-
pute new domains. For efficiency, lifetime analysis may be used to indicate which

domains may be reused, thereby reducing the tuple size.

* Events associated with a traced primitive relation are automatically converted to
periods by inserting an EventToPeriod operator node above the access node (see

appendix C).

Although the update network produced by this process is semantically correct, it is prob-
ably too inefficient to execute directly. The rest of this chapter will discuss ways to improve

-. both the time and space efficiency of the update network while maintaining its correctness.

7.2. Efficiency

In order for the update network to operate in an efficient and timely manner, the arrival of
an input tuple at each node should cause a small, relatively uniform amount of processing. If
significant processing is required for each tuple, the monitor will be severely constrained as to
the maximum incoming tuple rate it can handle. Widely varying processing times cause
"jerky" behavior by the network, which may be acceptable when storing the resulting tuples
for later analysis, but are clearly unacceptable when the tuples are being viewed in real-time

by the user.

4- Minimizing the internal storage of each node is also important. The ideal, no internal

storage at all, is possible only for a few nodes such as ApplyOp and Selection. On the other
end of the spectrum, some nodes, such as the Cartesian product, require unbounded internal
storage. Clearly this is an unacceptable situation.

4 Four related approaches are available to increase the efficiency of an update network. One

Ii
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approach applies graph transformations to the update network, mapping an inefficient net-
work into a more efficient one. The second approach exploits the presence of the implicit
time domain by temporally ordering the tuples flowing across the arcs in the network. The
third approach places restrictions on the tuples the Cartesian product can produce, by limit-
ing the generality of the <when clause>. The last approach is concerned with the scheduling
of ready nodes (those with tuples on their input arcs). These approaches, applied in concert,
offer the possibility of increasing the time and space efficiency of an initial update network by
several orders of magnitude. A fifth approach, optimizing the update network after it has been
generated, will be discussed In section 8.6.2.

The Cartesian product provides a convenient example of all four approaches. A conven-
tional Cartesian product relational operator concatenates a copy of every tuple from one
relation with a copy of every tuple from a second relation. If there are n, tuples In R1 and n2

tuples in R2 , there there will be n~n2 tuples in R1 x R2.However, when the tuples represent
periods of time, they should be concatenated only if they overlap in time, i.e., only when their
start times strictly precede their stop times (the when clause allows other temporal criteria to
be used; overlap is the default and most commonly used criterion.) A tuple from the first
relation will in general overlap only a small fraction of the tuples from the second relation.

The space and time efficiency of the Cartesian product is strongly dependent on the num-
ber of tuples that must be processed and stored internally, which in turn depend on four
factors:

, the number of tuples in the underlying relations;

* the temporal ordering of the two input tuple streams;

* the number of tuples from one input which are concatenated with a tuple from the

other input; and

e the relative synchrony of the input streams.

The first factor depends solely on the computation process generating the events; the

second factor is under the control of the update network; the third factor is determined by the
exact semantics of the sequence operator in the when clause (to be discussed in more detail
below); and the fourth factor depends in part on the scheduling of ready nodes. Graph
transformations can be used to reduce the number of tuples participating in the Cartesian
product. Through the use of conversion operator nodes, the update network can alter the
temporal order of the tuple stream. A modified Cartesian operator node can greatly reduce
the number of output tuples generated. And finally, the scheduling of ready nodes strongly
affects the relative synchrony of the tuple streams. Each of these approaches will now be

discussed in more detail.

,o
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7.2.1. Graph Transformation

The first method, graph transformation, is used extensively in conventional relational
database systems [UlIman 82], and is a primary reason why the relational approach is now a
viable one. Graph transformations map an algebraic operator tree (i.e., the update network

used here) into a more efficient tree. Each transformation consists of a predicate and a

*. replacement. The predicate specifies the properties a node or tree of nodes must have in
-.order to satisfy the predicate. The replacement is a node or subtree which replaces the

subtree matching the predicate. The transformations are repeatedly applied in a specific
order to the operator tree until no predicate can be satisfied. The collection of graph transfor-

mations can be viewed as a production system [Forgy 79].

One example is a transformation that maps the subtree aF(R1 x R2 ), i.e., the Cartesian
product of R 1 and R2 followed by a selection by the Boolean function F, into aFI(R1) X

rF2(R2), if F is of the form (F1 A F2 ), and Fi only involves domains in Ri,. Such a transfor-
mation preserves the semantics of the expression, yet can increase the efficiency tremen-

dously. The Cartesian product has a time complexity of O(nln 2 ), where ni is the number of
tuples in the ith input relation. In this example, the Cartesian product is provided with fewer
tuples from the underlying relations, with the magnitude of the reduction depending on the

selectivity of F1 and F2 . If F1 and F2 each eliminate 90% of their input tuples (a common

occurrence), then the Car'esian product in the transformed tree will produce approximately
1% of the tuples produced by the Cartesian product in the original tree. This example il-
lustrates the use uf one transformation to reduce the execution time by two orders of mag-

nitude and the internal storage for the nodes in the network by one order of magnitude.

For the most part, the transformations used for operator trees in conventional data base
systems, such as the one just described, can be applied directly to update networks. In
addition, transformations developed for optimizing compilers, such as common subexpres-

sion elimination, are relevant. A few additional transformations not having relational operator
analogues have been developed for the 3pecialized nodes of update networks, particularly
the access nodes. These transformations will now be examined, followed by an integrated

example.

The first transformation makes use of the control input of access nodes (see Figure 7-2a,

primitive relations are represented by dark rectangles).

This transformation may be applied if

1. No domains other than domain k are used from B;

2. A is a primitive relation; and

*I
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3. Domain A.j is A.Process, if A is associated with a sensor-traced event, or
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A.Object, if A is associated with an object-traced event (similar restrictions apply
if A is associated with a sampled event).

If these criteria apply to both A and B, the one outputting the most tuples should be moved
to the top.

The idea behind this transformation is that domain k in B is being used to select tuples out
of the primitive relation A. Instead of generating all of A and then discarding most of it, as the
original update network does, the modified network uses B.k to generate only the correct
tuples in the first place.

The transformed update network has many advantages over the original network. The
selection, universal, and costly Cartesian product operator nodes are eliminated (the projec-.
tion nodes in the transformed network may also be eliminated if the k domain is the first one in
the relation). By using the control input to the access node for A, only those objects or
sensors found in B are enabled, thereby significantly reducing the number of event records
generated.

The second transformation is simply a variation on this theme (Figure 7-2b). The only
restriction is that A be associated with a sampled primitive relation. This transformation recog-
nizes that tuples of a relation are desired only at clock ticks. The third transformation (Figure
7-2c) recognizes that only the start event of a traced primitive relation is necessary, so the
events are never converted to periods.

As an integrated example, consider the follow query,which uses the primitive relation
EXECUTIONSTATUS (Process, State) and the derived relation F (Process):

retrieve StopRunning (E.Process)
where E.State - Done and E.Process = F.Process
at E.Start

This query determines the time when each process in F stopped.

The initial update network is shown in Figure 7-3a.

The first transformation eliminates a selection, a Cartesian product, and a universal node
(Figure 7-3b); no additional projection is needed since F contains only one explicit domain.
The second transformation eliminates an event to period node (Figure 7-3c). The transformed
network contains half as many nodes as the original network; the nodes are all memoryless;
and the tuples are all events. Only the processes in F will have the ExecutionStatus sensor
enabled. Thus, the transformed update network is much more efficient than the original one.
A more involved example, complete with performance measurements, appears in section 8.6.

Transformations provide one way to encode knowledge concerning monitoring-specific
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Figure 7-3: Applying Multiple Transformations

aspects of the update network. The three transformations presented above concern such
mechanisms as the control input to access nodes, sampled primitive relations, and the sup-

: port of primitive period relations associated with traced sensors. As new mechanisms are
. added both to the update network and the resident monitor, new transformations may be

*developed so that the network generation component can utilize these additional
mechanisms.

1S
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7.2.2. Temporal Order

There are four ways to order periods temporally (event tuples can of course be ordered
temporally only one way):

1. (non-overlapping) period tuples ordered by their start and stop times;

2. start-period and stop-period event tuples;

3. period tuples ordered by their start times; or

4. period tuples ordered by their stop times.

Different algorithms require different temporal orders. The operator nodes can be divided
into two classes with regard to temporal ordering: those that are memoryless, i.e., do not
require internal storage, and those that do require internal storage. Space and time com-
plexity are correlated at this level of detail--the greater the internal storage, the more process-
ing is required to search or augment the internal storage when a new input tuple arrives. Of
course, once the correct temporal ordering of input tuples for a particular operator node has
been determined, then space can be traded off for time. Unary operator nodes whose
processing only involves the current input tuple, (e.g., ApplyOp, Selection) are memoryless,
so their storage requirements do not depend on temporal order. Their execution efficiency is
also invariant with respect to temporal order.

The rest of the operator nodes all require internal storage, and therefore are sensitive to

temporal order. Some operator nodes require a specific temporal order; the conversion may
be done either with special operator nodes, or as a side effect. Representation (1) occurs
naturally when traced events are converted to periods, and is a special case of representation
(2); (1) can be converted to (2) trivially by converting each incoming period tuple into con-
secutive start-period and stop-period tuples. If the periods do not overlap, the same holds
true for representations (2) and (3). To convert from (3) to (2), maintain a list of tuples ordered
internally by stop time. Whenever a new tuple comes in, first output stop-period tuples for all
internally stored tuples whose stop time precedes the start time of the input tuple, then output

a start-period tuple for the input tuple. Finally, store the input tuple in the correct position in
internal storage. A similar algorithm maps (2) into (3). The internal storage contains all the
tuples valid at the "current" time (the start time of the current input tuple); some operator
nodes require this information anyway in their calculation. Representation (4) is unaccept-
able, since a node having an input tuple stream in this representation must at any point be
prepared for an input tuple arriving much later yet which started before the current time.
Tuples must be stored indefinitely in preparation for such a possibility.

The central point in this discussion is that, for each operator node, some temporal orders

IA
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are definitely unacceptable, some are acceptable, yet imply additional processing, and one
temporal order is optimal. The goal is, given a particular update network, determine a tem-
Poral ordering for each arc, consistent with the operator nodes connected to that arc, which
minimizes execution time and internal storage for the entire network.. This task is made more

flexible by providing several versions of each operator node which take as inputs and produce
as outputs different temporal orders. Additional flexibility (and complexity) is introduced by
operator nodes which change the temporal order. The operation of the ordering operator
nodes is to store the incoming tuples until a checkpoint tuple arrives, then output the stored
tuples in the appropriate order, using the conversion algorithms given previously, followed by
the checkpoint tuple. These operator nodes, although themselves expending time in execu-
tion, could potentially increase the efficiency of the entire network if inserted at the correct
positions (a similar case could be made for eliminating duplicate tuples).

Determining the optimal ordering for a query is in general impossible, since an analysis of
time and space efficiency for the query requires knowing the number and content of tuples
which will be flowing over each arc. However, it is sometimes possible to determine an order.
ing for each arc which is optimal for widely varying tuple counts. There also exist networks
where a particular ordering for each arc is optimal for any set of tuples flowing through the

*: network. One heuristic which works well is to require the access nodes to order their output
- tuples by start and stop times, if the periods do not overlap, and otherwise by start times. Two
*' versions of operator nodes are required, differentiated by the tuple orderings they expect.

*Determining the temporal ordering at internal arcs is now straight-forward, since the ordering
of the output of an operator node is fixed once the ordering of the input arcs has been
determined. This topic clearly requires more study; the above analysis constitutes a first cut
at the problem.

7.2.3. Limiting the Semantics of the When Clause

The innocuous sequence operator in the <when clause> of the TQuel retrieve statement
greatly influences the efficiency of the corresponding update network. The problem occurs in
the Cartesian product operator node. Recall that the Cartesian product concatenates all

"i  tuples from the left input with all the tuples from the right input. Since all the tuples that have
arrived at any point in time from one input are to be concatenated with future tuples from the
other input, no tuple can ever be removed from internal storage. This is clearly an expensive
option, both in terms of execution time and storage requirements.

.- However, there is an optimization which makes the Cartesian product feasible. The <where

- * clause> and <when clause> serve to eliminate some or most of the tuples produced by the
Cartesian product. If the <when clause> does not contain a sequence operator, then all tuples
where the underlying tuples did not overlap will be eliminated. Hence, in this case, the

*Cartesian product operator node need only store incoming tuples internally as long as there is

w.:
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a possibility of overlap with tuples from the other input. Once it Is clear the tuple will not
contribute to any more output tuples, it can be eliminated from internal storage. The node can

utilize checkpoint tuples or the temporal order of the incoming tuples to this end. Since the

incoming tuples will be stored internally for only a short amount of time, rather than in-

definitely, the space and time requirements will be greatly reduced.

Unfortunately, not allowing the sequence operator is a rather severe restriction. In the

following discussion, a series of five implementations of the Cartesian product will be ex-

amined, each with a different semantics for the sequence operatr in the when clause, trading
generality for efficiency. The implementations differ in the tul %hat are considered to be

consecutive, and thus in the number of tuples that must be re sd for possible concatena-

tion with tuples arriving later.

The most restrictive, and thus the most efficient, implem n (1) of the Cartesian

product outputs concatenations of periods that overlap. This is time implementation discussed

above, where the semantics of the sequence operator is undefined, because it is not

allowed 17 .

The next implementation (2) allows the sequence operator in the when clause, but requires

at least one period to be in effect at all times. Tuples are stored internally as long as a partial
overlap is possible.

Implementation (3) does not require overlap, but only concatenates tuples from one input

with tuples from the other input which overlap or which are closest temporally

(closest-neighbor tuples). Hence, for a given input tuple, if no tuples from the other input

overlap the tuple, then only two output tuples will be generated: the original tuple con-

catenated with the tuple from the other input occurring directly before the original tuple, and

the original tuple concatenated with the tuple occurring directly after the original tuple.

Implementation (4) uses the closest neighbor approach only for duplicate tuples i s . The

Cartesian product must keep one copy of each tuple around (potentially the entire database).

The last implementation (5) supports the sequence operator in its full generality. It is even

less efficient than (4).

Since implementations (1) and (2) seem overly restrictive, and implementations (4) and (5)

are overly inefficient, implementation (3) (closest-neighbor) offers the best compromise be-

, ~17Ahog
Although the sequence operator is not explicitly allowed, it may be used by the monitor to implement the parallel

operator (see section 4.2.2).

Note that duplicate tuples as used here match only on the explicit domains; they still occur at different times.

-I ' "r '
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tween generality and efficiency. Of course, implementations (1) or (2) should be used in the
update network for a query not utilizing the full generality of the when clause.

7.2.4. Node Scheduling

At any point in time, there are potentially many nodes with tuples on their input arcs, ready
to be invoked. This situation raises the issue of scheduling the nodes: determining the order
in which they are invoked19. There are two general scheduling disciplines: depth-first and
breadth-first. In depth-first scheduling, as each node produces a tuple on its output arc, the
tuple is immediately sent to the nodes the original node was connected to. In breadth-first
scheduling, the output tuples are queued, and sent to their destination nodes in the order of
their creation. Breadth-first scheduling ensures that the incoming tuple streams stay at ap-
proximately the same level as they travel through the network. This may result in a more
favorable synchrony of the tuple streams, thereby reducing the internal storage requirements
of the network. However, such a reduction has a cost: the tuples on the arcs must be stored
until it is their turn to be sent to the appropriate nodes. Depth-first scheduling uses only the
internal storage of the nodes in the network; the arcs have no storage capacity.

Both scheduling disciplines require mechanisms for handling checkpoint tuples, for con-
verting between temporal orders, and for internal storage of tuples at nodes which are not
memoryless. The central issue becomes the comparison of the increased processing result-
ing from managing queues for breadth-first scheduling versus a larger number of tuples in

*- internal storage for depth-first scheduling. This issue is discussed further in section 8.6.2.

S7.2.5. Other Issues

Several of the operator nodes may generate duplicate tuples °. A good example is the
Projection operator node. Even if all the incoming tuples are unique, the output tuples may

. not be unique, since one or more of the domai, have been discarded by the operator node.
S--Duplicate tuples matter semantically only when they are displayed or when they participate in

certain aggregate functions such as Count. The former is usually dealt with by allowing the
user to specify whether or not duplicates are to be displayed (c.f., Quel [Held et al. 75] and
Sequel [Astrahan&Chamberlin 75]). The participation of duplicates in aggregate functions
was discussed in section 4.4.1. However, when considering performance, duplicates are of

*i greater concern. The usual approach, adopted here, is to eliminate duplicates whenever

19 We are assuming that the update network executes sequentially. One appealing alternative is the parallel
execution of the update network.

20Here, the term duplicate is used to mean identical in all domains, including the implicit time domain.

6
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easily done in the course of other processing (such as sorting), and to leave them otherwise.
Any novel approaches for handling duplicates in standard relational databases would prob-
ably also apply to temporal databas.

A second issue relating to efficiency is the coupling between the remote and resident
monitors. It is fair to state that the transmission time between the resident and remote
monitors will be one or more orders of magnitude slower than the time required to move a

21
tuple through the update network . The transmission time becomes crucial if the processing
of a tuple results in a sample being requested by the remote monitor, or an event being

enabled or disabled. In these cases, the monitor might be able to move the critical portion of
the update network over to the resident monitor.

As one example, suppose that the system utilization was requested. This query would
result in an update network with the universe relation for processes (containing all the
processes the remote monitor was aware of) connected to the control input of the Con-
textSwap access node, specifying that context swaps for all processes wer e to be monitored.
The same effect could be obtained by having the resident monitor instruct the process creator
to automatically enable the ContextSwap for each process it constructed. In effect, a portion
of the update network is being performed in the system being monitored, rather than in the
remote monitor. This optimization could be implemented using one or more graph transfor-
mations. An open question is, what mechanisms, such as automatic event enabling, are
useful for implementing special ized portions of update networks in the resident monitor?

There is another aspect regarding efficiency which concerns the delay between the occur-
rence of an event and the instant to monitor makes the user aware of the event. Most
monitoring systems are off-line monitors, in that the data is analyzed after the process has
completed executing. Some monitors are on-line, since the data is analyzed concurrently with
program execution. The goal is a real time monitor, guaranteeing a rather short delay be-
tween the occurrence and the display of the event. The monitor described here is an online
monitor, due to the presence of operator nodes which are not memoryless. Such nodes may
delay typles for arbitrary lengths of time. invalidating any response time guarantees.

2Inthe implementation described in chapter 8, the times differed by a factor of several hundred.
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7.3. Summary

This chapter has considered the task of applying as much knowledge aspossible to the
generation of update networks from user queries. The process is composed of three stages:

1. Generating an initial update network via the relational operator tree for the query;

2. Modifying this network so that it correctly computes the desired information; and

3. Modifying the network so that it executes efficiently.

* The knowledge used by the monitor in this process includes:

1. information on the number and types of domains for all relations;

2. additional information on the sensors, such as whether they are traced or
sampled;

3. information on the available universal relations;

4. how the sensors affect data collected by other sensors;

5. how to incorporate checkpoints into the update network;

6. defaults for the where, when, start, stop, and at clauses;

7. the collection of graph transformations;

* * 8. information on the temporal orders supported by each operator node;

9. heuristics for determining the temporal order for each arc in the network;

10. other attributes of operator nodes, such as whether they are memoryless; and

11. varieties of the Cartesian product operator node, and how to select the correct
* variety.

Such knowledge is available from several sources, primarily the algorithms embedded in

the monitor, the incoming event records, and the data structures constructed from these
* event records. At this point, an answer is now available to the problem stated in the previous

chapter:
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Problem: How can the knowledge contained in the monitor itself and in the

incoming event records be used to direct the translation of user queries into cor-

rect, efficient update networks?

Result: The primary techniques available for generating update networks are

(a) the translation of the query into a relational operator tree and then into an initial
C' update network, (b) the translation of this network into a correct network, and (c)

the use of graph transformations, temporal order, and node scheduling to greatly
increase the efficiency of the network. The system-dependent aspects can be

embodied in the primitive relations and associated access nodes.

The development of such techniques leads to the final major problem to be addressed in

this dissertation:

Problem: What is involved in implementing these proposed solutions? Can the

relational view be supported in concrete terms by a functional monitor?

| 4

-o.
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Chapter 8
An Implementation

The previous chapters have focussed on the support of the relational model in monitoring
distributed systems. This chapter describes in -some detail one realization of the solutions and
techniques proposed in those chapters. Many past efforts in monitoring were based on
models that lent themselves to efficient implementations; this thesis attempts to demonstrate
that one can utilize conceptualizations convenient to the user (i.e., the relational viewpoint)
without paying for it in terms of a hopelessly slow or complex monitor. A viable implemen-
tation is necessary to support this assertion.

A minimal monitor has been implemented. Although certain components have been
omitted, and no component has been completely implemented, all aspects have been carried
far enough to demonstrate feasibility. The remainder of this chapter will describe in some
detail the design and performance of this implementation. Appendix E demonstrates the use
of the monitor by stepping through the complete task of monitoring an application program,
the one described in section 3.7, from specifying the sensors to viewing the derived relations.

8.1. General Structure of the Monitor

Previous discussions have characterized the monitor as consisting of two components, a
remote monitor and a resident monitor. The remote monitor is system independent, accept-
ing user queries, processing the incoming event records, and displaying the derived infor-
mation, whereas the resident monitor generates, collects, and sends the event records to the
remote monitor. The remote and resident monitors each contain subcomponents: the remote
monitor consists of the relational database system, the monitor core, and the display module:
the resident monitor has a system dependent structure (see Figure 8-1).

In the implementation, the remote monitor runs on a Vax under Berkeley Unix
[Ritchie&Thompson 74]. The system being monitored is Cm* [Fuller et al. 78, Swan et a/. 771,
a tightly-coupled multiprocessor composed of 50 DEC LSI- 1i's and a substantial amount of
memory. All memory in the system is potentially accessible to all processors through five
microprogrammed controllers called KWaps. The microcode in the KMaps supports arbitrary
memory addressing mechanisms and operating system primitives. The fortunate presence of

ppVOSP
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Figu re8-1: Components of a Distributed Monitor

two recently developed operating systems for Cm* provides an excellent opportunity to study
k the interactions of the remote monitor with different resident monitors. Two resident monitors

were implemented, one on StarOS [Jones et al. 78, Jones et al. 79, Gehringer&Chansler 82]

called StarMon, and one on Medusa [Ousterhout et a/. 80] called Medic. Both operating
systems are message-based, object-oriented, and fully distributed. Both provide a stable en-
vironment of many asynchronous, concurrently executing processes, communicating through
messages or shared memory. This environment allows the monitor's ability to interface both
with distributed systems (using applications which communicate only through messages), and
with traditional multiprocessors (using applications which also communicate through shared

memory), to be validated.

* The remote monitor on the Vax communicates with the resident monitor on Cm* over an

Ethernet [Metcalfe&Boggs 75], a high bandwidth (3 MBaud) network. Since the Ethernet is

connected to most of the available machines, the remote monitor may be used to monitor
applications in different machines. Interfacing with another system requires the creation of a
new resident monitor, as well as the definition of the primitive relations of the new system. In

*g particular, applications running on different machines, using radically different operating sys-
tems, can be monitored once the appropriate resident monitors have been constructed.
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The remote monitor was partitioned Into modules by considering the required functions.
The display module handles all the processing required to illustrate entities and relationships,
using graphical representations associated with these entities and relations. Although the
display module is a vital part of a complete monitoring system, it was not implemented, except
for a collection of routines to display derived tuples as they were generated. The coupling
between the relational model used for monitoring and the model used for graphics is quite
interesting, and is under active investigation.

The relational database component is responsible for the storage and retrieval of relations.
This component functions as a "backing store" for the core module. An interface to the
Ingres relational database system [Stonebraker et al. 76] has been designed, and is currently
being implemented. However, there are still several unresolved issues in the coupling of the
monitor core and Ingres, principally in the representation of object names (forming another
name space, c.f., section 5.5.1) and the interface with the existing Ingres retrieval
mechanisms. Since functioning implementations of neither the display module nor the rela-
tional database system currently exist, these modules will not be discussed further.

The monitor core is itself comprised of three modules (see Figure 8-2). The Remote
Accountant handles the Ethernet protocol, sending tuples to the update network and sending

commands to the resident monitor. The TQuel compiler and update network were introduced
in earlier chapters.

The process decomposition actually implemented is similar to that described above, but not

identical (see Figure 8-3). The TQuel parser has been extracted, and the remainder of the
TOuel compiler merged with the update network. The parser was derived from the parser

used in Ingres, and can thus benefit from the functions provided by the Ingres terminal hand-
ler, particularly the extensive macro facilities. The rest of the compiler should be separated
from the update network to allow the monitor to process user commands and event records

concurrently; they were combined here purely for ease in implementation. The processes on
the Vax communicate using interprocess communication, or IPC [Rashid 80b]. IPC supports
communication via structures messages between processes on the same or on different
machines. IPC was not used for messages between the Vax and Cm* because it is not sup-

ported on Cm*.

The components of StarMon (the StarOS resident monitor) and Medic (the Medusa resident
monitor) are illustrated in Figures 8-3b and 8-3c, respectively. The parser and the remote
accountant were implemented in C [Kernighan&Ritchie 78], and the TQuel compiler and up-

date network were implemented in FranzLisp [Foderaro 801. The processes comprising the
resident monitors are written in Bliss/11 [Wulf et al. 75b], a high level system programming
language supported by both StarOS and Medusa.

The remaining sections of this chapter will focus on each of the components shown in
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Figure 8-3. The specification of sensors will be discussed initially, followed by an overview of

the resident monitors. Finally, the implementation of the modules of the monitor core will be

= examined.

2::: 8.2. Senseor Specification

,v During the initial development of the low level event collection mechanism, it became ap-
:.:. parent that there were several procedural difficulties in the placement of sensors in the
i:::':various operating systems. These difficulties are compounded when general users start

specifying sensors of their own. One difficulty was the that the sensor routine (which stores
the event records) was becoming quite cumbersome to use. One design required six

parameters for the simplest sensor, with additional parameters for each user-defined domainl

i-!.: ,Since the sensors were to be placed throughout the operating system, there was litle room
r for error in the specification of these parameters.

0 A second problem was the assignment of event numbers: an incorrect event number in a
:sensor routine would result in the absence of event rcords of that type--a situation that might

I

Compi"er
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Figure 8-3: Structure of the Monitor As Implemented

" be difficult to detect by the user interacting with the remote monitor. Two sensors with the

• " same event number would cause havoc within the remote monitor since the monitor would
i interpret the user-defined domains of some of the event records incorrectly. Assigning

, unique event numbers to the many projects, programs, and versions of user applications and

operating system was organizationally unmanageable.
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A third problem was maintaining consistency between the remote monitor's view of the
world and the world as it actually is. This is especially true during the early development of
the monitor, when the collection of sensors inside the operating system, and the various
attributes of those sensors, was changing frequently (this situation will continue to exist as
long as there is active development of system software). Finally, all these problems are

* exacerbated by the sheer number of sensors: an operating system might contain several
hundred sensors when it has been fully instrumented. The task of ensuring that all of these
sensors, which are distributed across many source files, many users, and many versions of

* each program, are correct and consistent, both between each other and with the data struc-
tures within the remote monitor, is unmanageable if it remains a manual one.

In general, the less the system programmer or user has to specify, the less that can go
wrong with the specification. In a best-case scenario, the user would specify the interesting
events and indicate where the sensors for these events were to be placed in the code. The

* sensor would be produced automatically from the specifications, and would be as efficient as
* one crafted by hand. When the program was run, the event types generated by these sensors

would automatically be defined as relations with the full query language available for
manipulating events generated by the sensor. In addition, enabling and disabling of the

* sensors in the user's program would be handled automatically as a side effect of evaluating
* queries referencing these relations.

8.2. 1. Sensor Description Files

The solution, described in this section, is to create a database, called the sensor descrip-
tion fie, or SDF, containing inforrmation on the sensors defined in a given taskforce. A

* task force is a collection of processes cooperating to perform a particular function
[Jones&Schwans 79]). Task forces roughly correspond to the concept of type managers as
used in section 5.1. The sensor description allows the above scenario to be realized in its
entirety: placing sensors in a program involves merely creating a sensor description file con-
sisting of a few lines per event type and object type, adding the sensors to the program (one
line per sensor), and running a program (called the description file preprocessor, or DFPre)
with the SDF as input. All of the details are automatically taken care of by DFPre, in collusion
with the resident and remote monitors and the Bliss compiler.

A sensor description file consists of a set of objects partitioned into classes. Each object is
4 associated with a set of class-dependent attributes. There can be one or more values for each

attribute, and some attributes can have objects as values. The syntax follows this description
quite closely (see Figure 8-4).

4 As an example, the following description file includes an event object with three attributes,
* one having domain objects as values (this event class is a fragment of an actual SDF,

reproduced in full in Figure E-1):
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<description file> :: = <objects>

<objects> = <object> I <object> <objects>

<object> :: , (<class> <attribute list>)

<attribute list> :: = <attribute> I <attribute> <attribute list>

<attribute> "" - (<attribute name> <attribute values>)

<attribute values> < (attribute value> I <attribute value> <attribute values>

<attribute value> :: = <object> I <object name> I <atom) I <integer> I <string> I (list>

<class> = atom>

<object name> <atom>

<attribute name> = atom>

<atom> <user defined name>

Figure 8-4: Sensor Description File Syntax

(event (name Iteration)
(timestamp true)

(domains (domain (name iternum)

(type integer)
*°° )

An SDF describes the sensors defined in a given taskforce. Since the operating system is

itself a taskforce (or collection of taskforces), one SDF specifies the sensors embedded in the

operating system. The Taskforce class includes attributes which hold for the task force as a

whole. The ObjectType class describes the objects which can be monitored by sensors

defined in the SDF. The SensorProcess class contains those attributes relevant to a par.

ticular process (i.e., a type manager). The Event class contains most of the attributes, includ-

ing the following:

Location the sensor process containing the sensor for this event;

Object the object type this event refers to;

Timestamp whether timestamps are to be included in the event record;

MinorType how the event is to be triggered;
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Domains the domains (optional user defined values) included in the event.

The Domain class includes attributes relating to each domain. Detailed descriptions of the
various classes and attributes may be found in [Snodgrass 82].

" 8.2.2. The Description File Preprocessor

The description file preprocessor (DFPre) reads in a description, performs syntactic and
semantic checking, and outputs several files containing information derived from the input
file. The position of DFPre in the program development process is illustrated in Figure 8-5. In
this figure, files are in boxes and programs are in ovals. The files provided by the user are
marked with an asterisk.

The DFS (DeFinitionS) files (called "require" or "include" files) are processed by the Bliss
compiler prior to reading the user's program. They contain macro definitions generated from

-.. the SDF. For example, each event class results in the definition of a sensor macro. If the SDF
contained the event class shown above, then the IterationSensor macro, with one parameter
(IterNum) would be defined. To place a sensor for this event, the user would simply put the
line

IterationSensor(ThtsIterationNumber)

*in the code. This!terationNumber is a variable containing the current iteration number. The

. DFS files contain virtually all the details necessary for the monitor to interact with this sensor.

DFPre also assigns an event number to each event class defined in the SDF. It is important

to note that event numbers are unique only within an SDF (and thus, within the task force
associated with the SDF). There are always several taskforces executing concurrently on

* Cm*, and each one has, for instance, an event numbered one. The mechanism used by the
- remote monitor to disambiguate these events will be discussed in section 8.5.

The remote description (RemDescr) is a specially formatted file containing the information
in the SDF of use to the remote monitor. This file is assembled and loaded with the user's
program. When the resident monitor encounters the taskforce, it ships the remote description

to the remote monitor as a series of event records. This operation is implemented as code in
the resident monitor containing sampled sensors. When the operation completes, the remote
monitor is aware of the events, sensor processes, and object types defined in the task force,
and knows how to enable and disable these events. The most important aspect of the remote

- description is that it resides with the program containing the sensors delineated by the
description; hence, consistency is guaranteed.

This mechanism also works for the SDF(s) associated with the operating system. Initially,
the remote monitor knows of no events, sensor processes, or object types. The resident

I
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monitor first establishes contact with the remote monitor, then sends over the remote descrip-
tion of the operating system, thereby defining the events contained in the operating system.
Since the resident monitor is part of the operating system, the sensors contained in the
resident monitor are handled automatically by this procedure.

In addition to rectifying the problems introduced at the beginning of this section, using
SDF's has several other advantages. Since DFPre has detailed information on the structure of

*each event, the code for that sensor can be tailored precisely to that event (the overhead of
sensors produced by DFPre is quite low, as will be seen shortly). DFPre can also collect
aggregate information concerning, for instance, all events located in a particular process, in
order to perform global optimization. The data structures for each object type can also be

* configured quite precisely. Bootstrapping the description of sensors in the resident monitor
itself is possible by predeclaring in the remote monitor only a few central sensors, primarily
those that send the sensor description information to the remote monitor 22. And finally, the
information in the remote description can be used to compensate for resources consumed

22The current implementation uses only 4 predeclared sensors; a full impi0,nenta n might require as many as a
dozen.
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during event collection, since the remote monitor will know what processing was involved in

storing each event record.

A disadvantage of SDF's is that they are rooted in a compile-load-execute paradigm. The

sensors must be specified at compile-time by the user. It would be desirable to allow sensors

to be inserted dynamically, for example, by a debugger or by the monitor, much as break-
points are inserted. Note that, by using the techniques developed for the Integrated Program-
ming Environment [Habermann et al. 81], one can have the efficiency advantages of a com-
piler with the flexibility of an interpreter.

Although most attributes for the various classes are system-independent, a few additional,

system-dependent attributes (and classes) are necessary. The allowable classes and at-

tributes are defined in a description tile format (OFF) file, input along with the SDF by DFPre.
The motivation for a DFF file is similar to that for an SDF: manual specification is simply too
difficult and error-prone. A DFF file is similar to an SDF file; the syntax is identical, yet the

classes and attributes are interpreted by DFPre. The DFF file specifies

* the attributes to be placed in the remote description;

* the allowable attributes for each class;

. the allowable values (types) for each attribute;

* the default (if defined) for each attribute; and

* other system-dependent information.

Currently, four DFF files have been developed, including one for StarOS SDF's (see Figure
E-4 for the full listing), and one for Medusa SDF's. Changing a particular aspect of SDF's in

general, such as the default for a particular attribute, merely involves changing the DFF file.

This section has described how sensors are specified, and how this specification, the SDF,
is manipulated by the monitor. The next section will examine the design of the resident
monitor, including a detailed analysis of the performance of the sensors generated by DFPre.

0,L

U
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8.3. The Resident Monitor

Chapter 5 presented a general low level data collection mechanism which could be applied
to the various levels of abstraction present in a computer system. In order to partially validate
the efficacy of this approach, the mechanism was implemented to monitor interactions at the
process-process and process-operating system level. This particular grain was chosen for
several reasons. Single process and single language monitoring tools have existed for quite
some time, while multi-process monitoring has little prior experience to build upon. Also, it is
not necessary when monitoring at this level to construct new hardware devices or program in
microcode, activities which tend to divert attention from the fundamental issues. Finally, inter-
actions at this level are the most complex, taxing the monitor's information retrieval and
knowledge representation facilities to the maximum degree.

As was mentioned previously, two resident monitors on different operating systems were
implemented: StarMon, on StarOS and Medic, on Medusa [Highnam 81]. Although both
operating systems are quite similar in the abstractions they support, there are significant

Q differences in the primitive operations provided by each system; these differences are
reflected in the structure of the resident monitors. This section will discuss the StarOS im-
plementation in detail, then examine the differences between StarMon and Medic.

8.3.1. StarMon: General Structure

The structure of StarMon is shown in Figure 8-3b. The StarMon Accountant maintains the
Ethernet protocol with the remote monitor, in addition to collecting event records to be sent to
the remote monitor. Most commands arriving from the remote monitor are simply channeled
to MonProc through a StarOS mailbox. MonProc is responsible for performing the indicated
operations. This partitioning was necessary both for performance and reliability reasons.
Due to limited main memory resorces for temporary storage of event records, the StarMon
Accountant must continually scan these storage areas and remove event records accumulat-
ing there. Any abnormal delays may result in the storage areas overflowing, with a sub-
sequent loss of event records. Rather than having the StarMon Accountant risk losing event
records while executing a lengthy command, these commands are instead leisurely per-
formed by MonProc, with few real-time constraints. In addition, an error might occur in
executing a command. Since MonProc executes all potentially dangerous commands, it can
simply reinitialize itself when an error occurs. The StarMon Accountant does not have such
freedom, since it must maintain the Ethernet protocol with the remote monitor. Hence, it
executes only the simplest and fastest commands.

Multiple instantiations of MonProc are allowed if the command rate is too high for one
*process to handle. Multiple instantiations of the StarMon Accountant could be accom-

modated with minor changes to it and to the Remote Accountant. Such a change assumes

6
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" that the Remote Accountant is fast enough to handle several Ethernet connections simul-
.-. taneously.

8.3.2. Sensor Performance Measurements

Small is beautiful.

i. Schumacher's dictum

The various data structures and algorithms employed in StarMon are discussed in Appen-
dix D. This appendix shows that the space overhead for including sensors in a process is
between .5 and 4%, depending on the number of sensors installed, and less than 2% for
allowing an arbitrary StarOS object to be monitored. The memory overhead for temporary
event record storage is between 1 and 7%, depending on the variability of the event genera-

tion process .

The performance of StarMon sensors was analyzed along two dimensions: implementation

(procedure call, inline code, microcode) and information collected by the sensor. Three
implementation versions of StarOS sensors were analyzed. The first version consisted of
inline code which tested whether the event was enabled, and, if so, called a procedure to
construct and store the event record. The second version consisted totally of inline code.

Both versions were implemented using existing microcoded operations for efficiency. The
third version was designed to be implemented fully in microcode. Its performance was es-
timated using computed memory reference counts are extrapolating from previously
measured microcoded operations. Details on the microcoded version may be found in appen-
dix D.5.

Measurements for these versions for five sample sensors is shown in Table 8.1. The sensor

o description file for these sensors (among others also tested) is shown in Figure D-7. These
sensors differ primarily in the amount and type of information they store in the event record.

Sensor A (Shortest in Figure D-7) is the minimal sensor: no timestamp, no domains, always
enabled. An example is

FileRead (File)

which indicates which file was read, but not the time the file was read or any other information

about the read operation. Sensor B (Short) includes the timestamp and one user-defined
integer domain. An example would b

BlockRead (File, BlockNumber)

Sensor C (Medium) includes a user-defined, double precision integer domain. Sensor D

Sl231f events were generated at a fixed rate, only a small amount of internal storage would be necessary. Larger
, amounts of storage are necessary if many event records are generated quickly, even if this occurs only occasionally.

F.
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Sensor Procedure call InLine Microcoded

Size lime Size Time Size Tin W

words microsecs words microsecs CALL words microsecs CALL

A 29 1850 41 585 5.9 7 250 2.5
B 38 2025 60 725 7.3 12 350 3.5
C 42 2150 62 765 7.7 15 400 4.0
0 44 2330 87 1395 14.0 18 560 5.6

Iteration .... 96 9700 9.7" 12 350 3.5

Estimated

Table 8-1: Performance Measures for StarOS Sensors

(Long) includes a variable-length character string domain (the time values are for storing a 15
character string). The last sensor is the one specified in the extended example presented in
appendix E. It is similar to sensor B, with more overhead due to tighter memory constraints
(analogous to a shortage of high speed registers). For all sensors, if the event was disabled,
the sensor took 165 microseconds, equivalent to 23 store operations. If no events were
enabled for the process or object, the sensor took only 15 microseconds (or 2 store
operations), representing the overhead of installing a sensor and never using it. T',e
microcoded version would take approximately 90 microseconds if the event was disabled, and
40 microseconds if no events at all were enabled. The reason the microcoded version in this
one case is significantly slower than the non-microcoded implementation is that there is a
fixed overhead of about 30 microseconds to invoke a microcode instruction.

Three surprising results were obtained from these measurements. The first is that inline
macro expansion, as opposed to calling a procedure to store the monitoring data, is always
appropriate. Calling a procedure is approximately three times slower than inline code.
Procedures are always slower than equivalent inline code, so the time penalty was expected.
However, the inline code to perform the data collection is only slightly larger than the single
procedure call! Since the procedure itself is 350 words long, inline expansion requires less
space than procedure calls if there are less than 20 or so sensors in the process. The reason
the inline expansion is so fast and space efficient is that the code for each sensor is highly
customized (by DFPre) to the exact specification of the sensor, as found in the SDF. For the
procedure call version, the various alternatives must be communicated to the procedure as
parameters, requiring additional space and time. An intermediate alternative would be to
have, say, three or four generic procedures, each specialized to a set of parameters, with
DFPre selecting the appropriate version for each sensor. At this point, the potential gains
start decreasing and one is tempted to simply apply techniques such as generic procedure
expansion to the entire program, rather than to only the sensor routines [Saunders
79, Rosenberg 83].
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The second surprise is that inline expansion is close in time to a fully microcoded version.
Overall the microcoded version was only 50-60% faster than the mixed version. On the other
hand, it would take an estimated two months for an experienced programmer familiar with
Cm* microcoding to implement and test the microcoded version [Vegdahl 82]. In addition,
the microcoded version would increase KMap contention, which could slow down concurrent

* memory references or other microcoded operations. There are, however, two distinct
* benefits to the microcoded version: it is significantly smaller than the inline version, and it is
* not susceptible to memory addressing constraints. For example, the microcoded version of

the Iteration sensor is identical in time to sensor B, which has few memory addressing con-
straints. The inline version of the Iteration sensor is significantly slower and larger than the
inline version of sensor B.

Most efforts at microcoding result in at least an order of magnitude speedup. The reason
why microcoding seems not to be a fruitful activity in this case is, again, the careful coding of
the mixed version, plus the fact that the mixed version relies heavily on existing microcoded
operations (see appendix 0.4 for details). The microcoded sensor must be general, whereas

* the mixed version is specific to the sensor. Hence, these results indicate that microcoding
effort should be invested in other parts of the operating system first, where greater gains are
possible.

* The third surprise resides in the CALL characterization of execution time. An execution
time in microseconds is only valid in a comparative analysis on the same machine, was done
as above. The CALL column specifies the execution time as the equivalent number of proce-

* dure calls (at approximately 100 microseconds each). This characterization of execution time
is roughly the ratio of the effort necessary to store the event and the effort to call a procedure,
providing an estimation of how fast a similar implementation would be on a machine other
than Cm*. The measurements indicate that the monitoring grain is between 6 and 10 times
coarser than a procedure call. Put another way, the monitoring grain for this data collection
mechanism is larger than a procedure call, but perhaps equal to a procedure that does
something interesting, in turn calling other procedures. It should be noted that this com-
parison is still somewhat machine dependent, since it includes assumptions concerning the
overhead of microcode invocation (rather high in Cm*), procedure call overhead (also rather
high), and relative efficiencies of microcode versus machine instructions.

The third result also verifies an assumption made earlier, namely, that sophisticated filtering
techniques are necessary to greatly reduce the number of event records generated. As a

* rough estimate, if monitoring with no filtering (all sensors are always enabled) incurs an
execution time overhead of 20%, then the 50 processors in Cm* could generate 10,000 event
records per second, most of which would be immediately rejected in the update network. If
filtering reduced the overhead to 1%, the 50 processors would generate a much more

* manageable 500 event records per second, most of which would be used by the update
network. As will be demonstrated later, it is possible for the other components of the monitor
to handle 500 event records per second, but certainly not 20 times that quantity-
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8.3.3. Medic

The structure of Medic, the resident monitor for Medusa, is shown in Figure 8-3c. Medic
consists of one process composed of a collection of coroutines (Highnamn 81]. The sensors
are quite similar in StarMon and Medic: the space requirements and execution times are
comparable, and the implementations follow each other quite closely. Medic supports an
identical protocol (see below), including initially sending the operating system's SOF and
executing all the commands. From the previous discussion, the single process structure
would appear to be less efficient and robust compared with StarMon. More explicit state-
ments concerning the relative efficiency and robustness must wait until Medic itself is instru-
mented; Medic has been designed and implemented and is now being tested. However, the
existence of two resident monitors partially demonstrates independence at the level of the
monitored operating system.

8.4. The Ethernet Protocol

The event records are initially generated by the sensors and placed in temporary storage
areas, waiting to be picked up by the resident monitor and sent to the remote monitor via the
Ethernet. The protocol [Highnam&Snodgrass 81] is a variant of the EFTP (Ethernet File
Transfer Protocol) [Shoch 79], simulating a transmission from the remote monitor (the host) to
the resident monitor (the slave). This protocol may be thought of as a modified transport
protocol using the Pup protocol as the packet layer of the communications hierarchy [Boggs
et al. 80, Davies et al. 79]. The commands are sent in the data packets and the event records
are placed in the acknowledgement packets. The protocol uses checksums, timeouts, and
packet retransmission for reliability. Since the resident monitor is a slave in the protocol, it
must wait for the remote monitor to send a packet before it can respond with an acknowledge-
ment containing data. Hence the remote monitor must occasionally send packets even if
there are no commands to be sent24. The resident monitor indicates in every acknowledge-
ment the amount of buffer space it has free, allowing the remote monitor to adjust the packet
transmission rate accordingly.

The following commands are supported:

Adjust Object either enable or disable an event;

Checkpoint generate a checkpoint;

Read Entry ask the resident monitor for some information to be sent back as a Report
data record;

24 O course, the minimum packet frequency depends on the event generation rate.
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Write Entry send the resident monitor Some information;

End indicate the last command in a packet.

The following variable length data records are supported:

Event Record generated by a sensor

*Report generated in response to a ReadEntry command;

Check a checkpoint;

Error report an error;

New Name report that an object has been garbage collected; and

Last Record indidate the last data record in a packet.

Given the record and packet sizes and observed transmission rates for the standard EFTP,
* a rough maximum event record transmission rate is 600 event records per second, com-
* parable to the maximum event generation rate given in section 8.3.2. The actual transmission

rate has not been measured; this estimate provides an indication of the possible performance
of this protocol.

* 8.5. The Remote Accountant

The remote accountant handles the details of the Ethernet protocol, including determining
which primitive relation each event record is associated with, unpacking the fields of the event

* record into a tuple, and generating remote names from the internal names present in the
event record.

The field unpacking is straightforward: the monitor core informs the remote accountant of
* the number and types of domains present in each primitive relation (this information is ex-

tracted from the SDF sent by the resident monitor). The fields are formatted for efficient
handling by the update network.

The mapping from internal names to remote names is also not difficult. The remote ac-
countant stores, for each internal name, the time period when each (epoch> was valid (see
section 5.5.1). A new epoch for an internal name begins when the object with that name is
garbage collected; the remote accountant is informed of this occurrence through a New

* Name data record (see section 8.4). The timestamp is used to determine which (epoch> is
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* appropriate for each internal name. Note that the checkpoint tuples can be used to keep thes
number of entries low, thereby reducing search time during this mapping. Although not
currently done, this process could also be used for object names appearing as values In
user-defined domains.

The remote accountant uses a variety of information to determine the associated primitive
relation for each incoming event record. Each primitive relation is assigned an integer called
the unique event number. Each taskforce is also asigned an integer called the unique fd

* number. Both of these assignments are made by the update network as it processes the
* event records encoding the remote descriptions of the SDF's. In addition, as the Identity of

* taskforce components is ascertained by the update network, it sends the remote accountant
* pairs of remote names and unique tf numbers.

When an event record arrives, the remote monitor first examines a specified bit in the event
record to determine if the event was an internal or external event. An internal event is as-
sociated with the process generating the event; an external event is associated with the object
the operation generating the event was performed on (see section 5.2). The remote account-
ant then extracts either the object name or the sensor name, if the event was an external or
internal event, respectively (both names may be present in the event record). This name is
used to determine the task force (unique tf number) associated with this event. Finally, using
the unique if number, the internal Boolean, and the local event number in the event record
(assigned by DFPre; see section 8.2.2), the unique event number is determined. It is this value
which identifies destination(s) (access nodes) in the update network the tuple is sent to.

The design of the remote monitor assumes that only one user is using the monitor, and
theref ore that there is only one update network to route incoming event records to. There are
no fundamental difficulties envisioned with having multiple users.

8.6. The Update Network

The update network, as described in chapter 6, accepts tuples from the remote accountant
and produces derived tuples, either to be stored in the relational database or displayed
graphically by the display module. The update network as viewed by the T~uel compiler is
specified by the three operations create, link, and unlink, and by the defined generic access
and operator nodes, allowing great flexibility in the implementation. For instance, when an
access node is created, the monitor updates several data structures in order to ensure that
the tuples flowing from the remote monitor are routed efficiently to the correct nodes. Tailor-
ing of the operator nodes based on the instantiation parameters occurs when the nodes are
created. Finally, the link operation performs quite different actions depending on the types

4 (and sides) of the nodes it is connecting.
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There are two primary approaches to implementing the update network: either the connec.
tivity graph is stored in a data structure and the movement of tuples simulated by an Inter-
preter which invokes the operator nodes, or the network is compiled into code which ex-
ecutes directly. The trade-offs are similar to the implementation of other language systems:
interpreters are more flexible, but compiled code is more efficient. An update network inter-
preter was implemented; from the experience gained in that effort, an update network corn-
piler was designed. Performance measurements were taken to determine the efficiency of the

~implementation.

* This section will first examine the representation of tuples, followed by discussions of two
versions of the update network, an interpreted version and a compiled version.

8.6.1. Tuple Representation

Tuples are represented by a list of domains. All tuples have three implicit domains: the
* unique event number of the tuple, the class of the tuple, and the time value for the tuple,

consisting of one or two timestamps. The following classes are included:

Event the tuple represents the occurrence of an event; the time value is a single

timestamp;

Period the tuple represents a relationship which existed for a period of time; the
time value is the pair <begin timestamp, end timestamp>;

StartPeriod the tuple represents the start of a relationship, with one timestamp;

StopPeriod the tuple indicates that the relationship no longer holds, with one times-

tamp; and

* Sample the tuple encodes a relationship which was true at the time specified by
the time value, a single timestamp.

A timestamp is itself the pair of times <start uncertain, start certain>, allowing for "fuzzy
.ievents" (see section 4.5). The primitive relations have little indeterminacy, on the order of tens

of microseconds (depending on how variable the execution time of the sensor is). Derived
relations, especially those derived from sampled relations, have much greater indeterminacy.

The explicit domains (the object, process, and user-defined domains) are typed, and have a
type-dependent structure. Since the tuples flowing on a particular arc of the network com-

l pose a relation, they are guaranteed to have an identical structure. The possible domain
types are integer, string, remote name, and temporal. A remote name (see section 5.5.1)

S
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specifies an object which exists (or did exist) in the system being monitored. A temporal
domain is the ratio of two linear functions of time, and is represented by 4 values specifying

the slope and the intercept (relative to the start uncertain time of the start timestamp) for the

numerator and the denominator. An example of a temporal domain is the domain calculated

by the Duration operation (see section 3.6); this domain consists of (1, 0, 0, 1), representing (1

x t + 0) / (0 x t + 1), or t, implying a value starting at 0 and increasing linearly with time.

Given these values, it is easy to calculate the value of the domain at any point in time between

the start and stop time, and to incorporate fuzziness into the value of the domain. A linear

function of time (requiring only two values instead of four) is sufficient for most purposes; the

additional values are necessary primarily for cumulative aggregate operators (see section

3.6).

8.6.2. Interpretation and Compilation

The interpreted version of the update network is organized around a collection of data

structures representing the access ano operator nodes. The primary mechanism is the as-

sociation of functions with each node which are invoked at specific points during each opera-

tion involving the node. For instance, associated with each generic node are functions to be

invoked when a node is instantiated from this generic node, and when the instantiated node is
.* linked to another node, linked from another node, unlinked, or sent a tuple to its left, right, or

control input. In the last three cases, if the function returns a tuple or list of tuples, those

tuples are automatically sent to the nodes connected to this node. Also included in the data

structure of each node are the instantiation parameters (names or values, depending on

whether the node was a generic or instantiated node, respectively), temporary space for

values to be stored across invocations of the associated functions, and debugging infor-

mation. The functions associated with the node are given access to these fields by including

the node as one of the parameters to the function.

Organizing the update network as a collection of data structures with associated functions

has several advantages over a more standard, monolithic implementation. The create, link,

and unlink operations themselves are small; instead of performing the operation directly, they
merely check for the presence of a appropriate function, and if present, then invoke the

function with the involved node as a parameter. Adding a new generic node is straight-

forward and does not require changes to any existing code. Such object-oriented program-
ming has found wide use in programming languages [Dahl et al. 67, Ingalls 78], artificial intel-

a ligetce systems [Winston&Horn 81, Charniak et al. 80], operating systems (Jones et al.

78, Wulf et at. 81, Ousterhout et al. 80, Kahn et al. 81], and command languages [Snodgrass

83], has served well in this application.

* "Since the algorithms in the nodes are embedded in the associated functions, the primary

task of the update network is ensuring that the tuples get to the correct nodes in the correct

I



124 1 An Implementation Monitoring Distributed Systems

order. Breadth-first scheduling (see section 7.2.4) was implemented, since it was felt at the
time that allowing the tuple streams to get out of synchronization would cause the update
network to generate Incorrect resulfs. After carefully considering synchronization and tem-
poral order, it became apparent that breadth-first scheduling alone would not guarantee cor-
rectness. Hence, in retrospect, it appears that depth-first scheduling is the preferable ap-
proach. As will be seen below, depth-first scheduling was implemented in the compiled ver-
sion due to its increased efficiency.

The TOue compiler as implemented generates correct update networks, but does not In-
clude most of the optimization strategies discussed in section 7.2. Although the interpreted
version was flexible and relatively easy to implement, it had one major drawback: it was slow.

* . As the measurements to be presented below indicate, the maximum tuple rate achieved, even
with the optimizations, was less than 25 tuples per second. Given the estimates derived

* earlier in this chapter, this rate is about an order of magnitude too low. To achieve such a
* -. speedup, it was necessary to abandon some of the flexibility afforded by the interpreter.

The update network compiler, as opposed to the TQueI compiler, which produces an up-
date network from a TQuel query, translates a sequence of create and link operations (i.e., the
update network) into a collection of Lisp functions, which are then compiled by the Lisp
compiler25.

The update network compiler was designed but not implemented. However, the techniques
involved in compiling update networks are commonly found in standard compilers. Details of
possible optimizations may be found in appendix F. Construction of an upd~at network
compiler should be a straightforward task not requiring any new breakthroughs.

8.6.3. Update Network Performance

Table 8-2 compares the various implementation techniques. Three sets of measurements
were taken; one with the update network generated by the existing compiler, one with the
update network optimized by hand, using only strategies that could be readily implemented,
and one with Lisp functions generated by hand from the optimized update network, again
using only strategies that could be readily implemented. The update networks all implement
the queries given in section 3.7. It should be emphasized that the measurements only apply to
this one set of queries, and may not be representative of queries in general. On the other

* hand, these queries are somewhat complex, involving several (tuple variable>s, (when
clause>s, <where clause>s, (start clause>s, and (at clause>s, and several expressions. The
measurements includA the number of fires per input tuple (a fire is the invocation of an access

2Note that the update network compiler could also be implemented to generate C routines, which would then be
compiled into assembly code.
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or operator node), the execution time per fire, and the number of input tuples which could be
absorbed each second. The details of these and additional measurements are given in ap-
pendix F; this section will summarize the results.

Version Tuples Fi res Milliseconds Input Tuples

Generated Per Input Tuple Per Fire* Per Second*

Initial 32 19.9 7.8 6.6
Transformed 32 9.2 4.7 15

Compiled 32 1.0 1.5 660

*.On a dedicated Vax 11/780

Table 8-2: Performance Measures for the Update Network

Since all three update networks were correct, they generated identical output tuples for the
same input tuples. For a set of 50 test input tuples, chosen to produce interesting results,
there were 32 output tuples produced (see Table 8.2). All trials with actual input tuples
resulted in few output tuples, since one process tended to get and stay ahead of the other
process (recall that the queries investigate the interplay between the two processes). Hence,
since each input tuple that results in an output tuple causes more node fires than an input
tuple that gets eliminated during the processing, the measurements using the test input tuples

are quite pessimistic for this update network.

In the non-transformed network, each input tuple resulted in almost 20 node fires, generally

as a result of the selection operator nodes being after the Cartesian product nodes (again,
see appendix F for details). The execution time per node went down by 40% from the original
to the optimized update network, primarily due to the more favorable temporal order. These
two reductions cooperatively increase the number of tuples processed per second by an
impressive factor of 5.

An even larger increase (a factor of 40) occurs with the update network is compiled. There

is only 1 fire per tuple in the compiled version because each update network in this approach
is in effect a highly specialized operator node (internal function calls were not counted). In

fact, the optimizations on the original update network, coupled with conversion of the update
network into Lisp, and then into assembly language, result in an improvement of two orders of

*l magnitude. The number of input tuples processed per second is comparable to previous

tuple rates computed for the resident monitor and the Ethernet protocol.

4

I
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8.6.4. Relationship to Data Flow

The update network as constructed by these operation out of the nodes described above

resembles a data-flow program. Data flow programs, in their graphical representation, consist

of computational nodes connected in a graph structure. Values, in the form of tokens, flow

over the arcs during the computation. Data flow programs meet three
criteria [Aggerwala&Arvind 82, Davis&Keller 82]:

- freedom from side-effects,

* data availability firing rule, and

e lack of history sensitivity in procedures.

The first and second criteria follow by definition for the update network; there are no global

data structures and a node fires when a tuple appears on its input arc. One can argue that the
third criteria doesn't hold; one example is the join node, which concatenates an input tuple

from the left arc with all previous input tuples from the right arc, then applies a predicate to

the result. Although there is history sensitivity in the order of the output tuples, the same
tuples are eventually generated independent of the order of the input tuples. Since order is
semantica!ly irrelevant, the update network is in fact a data flow program.

Since each update network is in fact a data flow program, it follows that techniques and
hardware developed for executing data flow programs would apply directly to executing up-

date networks [Dennis 801. A variation on this idea may be found in [Bora!&DeWitt
81. Beral&DeWitt 821, where a dataflow implementation of the (non.temporal) relational al-

gebra at the granularity of pages, rather than tuples, is described.

8.7. A Step Back

Behind the implementation described in this chapter, and at the core of the research, is an
iterative process for building quality software:

1. Determine the "correct" conceptualization of the program to be implemented.

2. Develop an interface (user-program or program-program) that adheres as closely

as possible to that conceptualization.

3. Test the conceptualization with a highly flexible, probably inefficient implemen-

l tation.
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4. Apply all the available information to a particular instance of the problem in order

to efficiently perform the desired action, trading generality for efficiency.

5. Demonstrate as formally as possible the semantic integrity of the translation from

general to specific.

6. Use available technology to the greatest extent possible at all stages.

This process certainly contains nothing new: in some form, it is at the root of high level

languages, operating systems, many design methodologies, and successful software systems.

What is new is the application of this process to yet another software system, a monitor for

distributed systems. Three instances of this process as they occurred in the implementation
will be outlined, followed by a succinct statement of the major results of the implementation.

Example 1:

1. Monitoring "should" be viewed r-. retrieving information from a dynamic rela-

tional database.

2. TQuel is a user interface that adheres to this viewpoint.

3. The relational calculus serves as a flexible yet inefficient "implementation".

4. A TQuel query can be translated into a relational algebraic expressions, and can

then be optimized using a collection of transformations.

5. Each TQuel query was proven to have an equivalent tuple calculus expression,

which can be proven to have an equivalent relational algebraic expression.

;6 6. The available technology consisted of the mathematical basis for relational

databases and the semantics of standard relational queries, as well as the

Ingres [Stonebraker et al. 76] and yacc [Johnson 75] systems to aid in lexical

analysis and parsing.

*l Example 2:

1. Sensors "should" be viewed as parameterized actions.

2. Sensor Description Files (SDF's) constitute a user interface for specifying the

6 attributes of the user's sensors.



128 I An Implementation Monitoring Distributed Systems

3. A sensor routine was implemented, and various approaches were investigated to

determine how the event information could be communicated to the monitor.

4. DFPre converts an SDF event class into a highly parameterized macro call.

5. The sensor routine and inline macro share most of the code, ensuring that both
implementations perform identical operations.

6. The available technology included the highly optimizing Bliss/1 1 compiler [Wulf
et al. 75c], the concept of a linearized representation of a parse tree as developed

* in the P0CC project [Leverett et al. 80], and the use of frames as a data

structure [Winston&Horn 81].

Example 3:

1. The target code for the TQuel compiler "should" be an update network.

2. The interface consists of the three operations create, link, and unlink, and the

collection of generic access and operator nodes.

3. An interpreter-based implementation was developed to test the concept of an

update network.

4. A -ompiler was designed to translate an update network into an efficient Lisp
program.

5. The integrity of the translation process was partially validated by designing a

compiler using many of the same data structures used by the interpreter.

6. The available technolcgy included techniques for compiling production
systems [Forgy 79], the Lisp compiler [Foc .'aro 80], and the specification of Bon-
sai, a tree transformation system used in the PQCC project [Leverett et al. 80].

8.8. Evaluation

Every honest calling, each walk of life, has its own elite, its own aristocracy based on
excellence of performance.

James Bryant Conant

0
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A chain is only as strong as its weakest link.

-Proverb

This chapter has presented, in some detail, an implementation of a relational monitor.
Although not all components were implemented- -the display module, relational database in-
terface, and update network compiler were only brought through the design stage--and the
components that were implemented are incomplete, enough was' -plemented to assess the
viability of a complete implementation.

The criteria given in chapter 2 for an effective monitor relating to implementation were
efficiency and system- independence. System- independence is an ill-specified criterion.
However, the existence of two resident monitors, running on rather different operating sys-
tems, at least indicates that some measure of system- independence has been achieved. Of
course, the more resident monitors implemented, the higher the confidence in this assertion.

There are two aspects to the issue of efficiency: is the monitor as a whole efficient enough,
and do the components have comparable efficiencies? The latter issue exposes bottlenecks
where high efficiency of some of the components is wasted by one or more low efficiency
components. Given~ the monitoring grain supported n the implementation, that of process-
process and process- operating system interactions, the efficiency of the implementation is
adequate. Section 8.3 showed that an overhead of 1% re~sults in the generation of ap-
proximately 500 events per second; section 8.4 came up with an approximate event record
transmission rate of 600 events per second, and section 3.6.3 indicated that a processing rate
of over 600 input tuples per second was possible on a dedicated Vax. Thus, the Ethernet and
remote monitor can essentially keep up with the 50 processors on Gmf-'. It is also fair to say
that if the situation is changed somewhat; say, an additional 20 processors are added to Cm*,
or the Ethernet or the Vax get loaded, then the monitor as realized here would not be able to
keep up.

The point to be emphasized is that it is in fact possible to implement a monitor supporting
4 the high level conceptual viewpoint of a collection of time-varying relations which can be

manipulated by a temporal. non-procedural query language, with enough efficiency to
monitor a large, complex distributed system. Although further measurements and a careful
analysis of the performance of the various components are certainly needed, the issue now is,
how large a distributed system can be monitored in this way, rather than, can a distributed
system be monitored in this way. Hence,

Result: With careful design and the use of previously developed concepts,
techniques, and tools, it is possible to support a powerful, high-level conceptual
interface to a distributed system monitor with an efficient, nicely structured im-

* plementation. The user does not have to specify how the data is collected, or worry
about the details of collecting, formatting, and processing the event records.
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IV. Conclusion and Appendices

The previous chapters have attempted to stay as abstract as possible while still presenting

enough detail to show how the mechanisms work. For the curious, several appendices have

been provided to tie up the loose ends.

.4
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Chapter 9
Conclusion

If a man will begin with certainties, he shall end in doubts; but if he will be content to begin

with doubts he shall end in certainties.

-- Francis Bacon, in The Advancement of Learning

The thesis of this research is that monitoring distributed systems is fundamentally a

knowledge representation and information processing task, and that the user interface and

internal structure should be conceptualized in this way, that is, in the relational paradigm.

Given this approach, many questions immediately come to mind, involving such issues as

9 data collection;

* dynamic incremental updating of temporal relations;

e syntax and semantics of the query language;

* translating a query into a more convenient form; and

o implementing the proposed mechanisms.

The results generated fromi an examination of these issues are summarized in result state.

ments at the end of each of the previous chapters.

Several specific results constitute the major contributions of this research:

o A temporal relational query language, TQuel, was developed by syntactically and

semantically augmenting an existing query language and by incorporating pre-

vious work in synchronization (i.e., path expressions).

o A formal semantics was defined for the entire TQuel Retrieve statement. This

semantics has several desirable properties:

PVIUS PA
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o It reduces to the standard Quel semantics when the time domain is fixed at
a particular time.

o It includes aggregate operators in a uniform fashion.

o It accommodates an arbitrary degree of indeterminacy.

*A low level data collection mechanismn was presented. This mechanism, based on
a strongly typed model of the environment, supports several dimensions of filter-
ing, integrates sampling and tracing, and admits solutions to the problems of
naming and time.

*Update networks were proposed to implement dynamic incremental updating of
derived temporal relations. The network is composed of access nodes, which
interface effectively with the resident monitor, and operator nodes, which carry
out the desired computations.

k . Several general techniques were developed to generate correct and efficient up-
date networks from TQuel queries. These techniques include:

o the translation of the query into an initial update network via the relational
operator tree;

o modifications to this network to ensure semantic correctness; and

o the use of graph transformations, temporal order, and node scheduling to
greatly increase the efficiency of the network.

These techniques made extensive use of knowledge available to the monitor.

*Several problems concerning the specification of sensors were solved by using
sensor description files. The user does not to specify how the data is to be
collected, or worry about the details of formatting or processing the event
records. By using the information in the sensor description files and by careful

0 use of available microcoded operations, highly optimized StarOS sensors were
implemented.

*By compiling the update network, an increase of over an order of magnitude in
execution time was obtained.
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9.1. Surprises

Many of the results stated above were at least partially anticipated when this research was
first proposed. However, there have been several interesting surprises along the way. These

surprises will be presented as previously held assertions that turned out not be true in this

case. Each assertion can be interpreted either as a statement that should have been recog-
nized initially as being false , or as a generally valid observations that has less applicability

than previously believed.

: Naming is not a problem when monitoring, because the sensors will in general

have access to names of objects involved in the events the sensors are recording.

As shown in section 5.5.1, there is in fact no mechanism for producing remote

names which will satisfy all the required invariants. The solution adopted there

was to slightly corrupt one of the invariants, resulting in a minor reduction in the

ability of the monitor to collect information.

* Inserting sensors is a routine, yet time-consuming process.

All past experimentation on Cm* has relied on manually inserted code to collect

the information and, later, to analyze it. When the mechanism described in sec-
tion 5,2 was adopted, sensors became more versatile, and consequently, more

complex. Eventually, I realized that inserting sensors was becoming quite difficult
procedurally, given sensors spread across many users, programs, and files (see

section 8.2.1). inserting sensors was no longer routine. and was even more

time-consuming. The solution was to use automatic assistance via sensor

description files, resulting in a routine, fast method for inserting sensors.

* Extending aggregate operators to include time should be easy, yet extending the

semantics to incorporate an arbitrary degree of indeterminacy is very difficult.

Specifying the semantics of aggregate operators on temporal relations turned out

to be amazingly complex. At least seven (!) different interpretations of the tem-

poral avgc operator were considered (see section 4.4.1). On the other hand, to

accommodate indeterminacy required only two changes: adoption on a three.

valued logic system and a straightforward redefinition of the before predicate

(see section 4.5).

26In which case, I am merely admitting my prior ignorance.

4
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* Implementing sensors in microcode, rather than in Bliss/1 1, a high level systems

programming language, should result in a significant decrease in execution time

and program space.

The tracer routine in C.mmp, which performs a similar function to the StarOS

sensor, was originally implemented in assembly language, and required nearly

140 instruction equivalents in execution time (350 microseconds on

PDP-1i's) [Wulf et a/. 81]. Microcoding this operation reduced the execution time

by a factor of 5 to 26 instruction equivalents (65 microseconds). Microcoding

other instructions has resulted in reductions of one or more orders of magnitude.

The experience with the StarOS sensors did not follow these expectations. The

microcoded sensor was only about twice as fast as the implementation using a

combination of Bliss/1 1 code and existing microcoded instructions; see section

D.6 for the details.

e Inline expansion runs faster, but procedure calls take up less code space.

.With regard to StarOS sensors, inline expansion was faster and shorter (again,

see section D.6).

* Processing temporal databases must be much slower than conventional

databases, since they are so much larger (a conventional database contains only

the slice of a temporal database currently valid.)

By utilizing the techniques presented in section 7.2, it is possible to exploit the

temporal order of incoming tuples. In this way, each new tuple affects only a small

portion ot the database--that portion which was close in time to the incoming

tuple. Information in the database that is removed in time from the incoming tuple

is not affected by the addition of this tuple. This use of temporal locality effec-

* tively reduces the size of the database as seen by the update and retrieval al-

gorithms, making a temporal database as efficient as a conventional database
which stores only the most recent portion of the information in the temporal

database.

O
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9.2. Remaining Problems and Future Research

It is better to know some of the questions than all of the answers.

--James Thurber

The remaining problems provide excellent opportunities for future research. There are at
least four directions the work reported here can be extended along. The most natural direc-
tion is to complete and extend the implementation. The second avenue for further work is to
integrate the monitor with the other tools in the programming environment. The relational
approach indicates another overlap, that of databases in general and temporal databases in
particular. And finally, there is a need to pursue an area motivating this research, that of
knowledge representation. These areas each suggest several more promising research
topics.

The most striking need in the implementation is a display module.There has always been a
strong connection between data structures (and thus data bases) and graphics. Leap, a
language supporting an associative memory (a precursor to the relational model), was
developed to aid in the implementation of graphical applications [Feldman&Rovner 69].
Recently, several graphics systems employing a relational data base have been implemented
[Becerril et al. 79, Williams 74, Herot 80].

The techniques developed in these systems suggest that a graphical interface for a monitor
designed around the relational model would be possible. However, there are still several
interesting problems in designing the display module, including representing indeterminacy,
controlling the display rate, utilizing the available visual modalities (color, blink rate, absolute
and relative position, shape, movement) of the display device, and specifying these attributes
in TQuel. Another area for improvement in the implementation is the interface with Ingres.
Also, essentially all of the modules require significant effort before the monitor can be used by
unsympathetic users.

The monitor was implemented as an autonomous unit, interacting minimally with the other
software development tools comprising the programming environment. A much higher de-
gree of interaction is desirable, so that the tools can cooperate and provide functions not
feasible with disjoint tools. Such interaction is feasible only if the user's program has a

-d representation accessible through a common interface. One such representation is an at-
tributed parse tree, created by the parser, manipulated by the semantic analyzer, and read by
the code generator and debugger [Schatz et al. 79, Goos&Wuif 81, Habermann
79, Habermann et al. 81]. Another possible representation is the collection of relations
generated by the relational monitor, and perhaps used by the compiler and loader for op-

4 timization based on performance data [Schwans 82, Segall et al. 83, Jones&Schwans
82, Singh 81]. Generalizing this approach, a program ceases to be a collection of typed files

4



138 I Conclusion Monitoring Distributed Systems

(in essence, a very specialized and restricted database), but rather a general database in
which the various utilities insert and extract information useful for the operations they
implement [Cattell 80]. This database must incorporate in an integrated fashion both static
information, such as the parse tree and the symbol table, and dynamic information, such as
that gathered by the monitor. Finally, it would be useful if this database were in some way
accessible to the program as it executes. The program could use the information in the
database to perform dynamic reconfiguration, error recovery, and load balancing.

A more general extension concerning databases is temporal databases. The application of
the relational paradigm to monitoring required a serious examination of the role of time in
databases. Recently other researchers have been looking into this area [Bolour et al.
82. Bradley 78, Bubenko 77, Anderson 82]. The research reported here has produced sig-
nificant results, primarily the design, implementation, and formal specification of TQuel. The
technology transfer can go both ways, either applying concepts from conventional databases
to the relational monitor, or trying to map the ideas behind the relational monitor onto general
temporal databases. For example, access nodes are similar to indexed relations, and temporal
order is similar to sort order, so techniques involving one concept may also apply to the other
concept [Smith&Chang 75, Kim 81, Yao 79, Wong&Youssefi 76].

An even more general and hence, less defined area for future research is the extension of
* the knowledge base used by the monitor. This knowledge base currently involves the infor-

mation that is processed, stored, and retrieved, as well as the algorithms performing these
manipulations. Extensions to the knowledge base include representing causality in the
monitor, and using the knowledge base to make inferences about future events. Extending
the TQuel semantics to use temporal logic [Rescher 71] might be a step in this direction.

Clearly, there are many interesting further questions one can ask given the framework
developed here. The adventure continues.

L-
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Appendix A
BNF of the TQueI Retrieve Statement

This appendix lists the syntax for the TOuel retrieve statement. Since TQuel is a strict

superset of Ouel, all legal Ouel retrieve statements are also legal TOuel retrieve statements.
The following non-terminals are not included in the syntax description because they are

"" identical to their Quel counterparts.

(bool expression> returns a value of type boolean

<expression> returns a value of type integer, string, floating point, or temporal

<integer> an integer constant

(name> the name of a domain

* *<relation> a relation name

(string> a string constant

<tuple variable> the name of a tuple variable

Also not shown are the additional temporal functions and predefined relations found in TQuel.

The syntax is given in standard BNF, with non-terminals in "0". The empty string is
denoted by "e". Terminals identical to the meta-character "1" are enclosed in double quota-
tion marks.

<TQuel retrieve> <retrieve head> <retrieve tail>

<retrieve head> :: retrieve into> <target list>

into> :: e I unique I <relation> I into <relation>

<target list> ::= (<tuple variable> all ) I (<t-list> )

4 ( t-list> ::= (t-elem> I (t-llst> , <t-elem>
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<t-elem> <name> (is> <expression>

<is> is =

<retrieve tail> ::= <selection> <temporal delimiter>

<selection> <where clause> <temporal selection>

<where clause> e I where <bool expression>

<temporal selection> := e I when <tbool-exp>

* <tbool-exp> <t-exp>
J ( <tbool-exp> )
I <tbool-exp> and <tbool-exp>
J <tbool-exp> or <tbool-exp>
not <tbool-exp>

<t-exp> <element>
I<t-exp> time
-<t-exp> start
-<t-exp> stop
<t-exp> ; <t--exp>

.<t-exp> , <t-exp>
<t-exp> "I" <t-exp>
( <t-exp> )

<element> <tuple variable>
I string>
I (integer>

<temporal delimiter> <period delimiter> I <at clause>

<period delimiter> <start clause> <stop clause>

<start clause> e I start <event expression>

<stop clause> e I stop <event expression>

<at clause> ::= e I at <event expression>
<i

(event expression> ::= (element>

<event expression> time
<event expression> start
<event expression> stop
<event expression> ; <event expression>

* <(event expression> , <event expression>( (event expression> )

*



Appendix B
Proof of the Conversion Theorem

Before presenting the proof of the Conversion Theorem used in chapter 4, it is useful to
repeat the syntax of temporal expressions and to list the productions. The syntax of the
temporal expressions is as follows:

(t-exp> = (uple variable>
< t-exp> . time
< t-exp> .start
< t-exp>. stop
< t-exp> ;<t-exp>

I<t-exp> "I" <t-exp>
< t-exp> , t-exp>
((t-exp>)

Seventeen productions are used to specify the semantics of the above syntax 2

(1) a starta

(2) (aIP)start =(a start start)

(4o) (a f)start (.a .start13start)I(3start; a start)

4(5) a. stop a

(6) (a /)stop =(aI)

27Both the overlap and coverage interpretations are accommodated here. The productions associated with the
overlap interpretation are denoted by (o), and with the coverage interpretation by (c).
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(7) (a;$)stop 4 6stop

(8o) (a, )stop =(a stopll3stop)

(80) (a P).-stop =(a stop ;'0stop) I (Plstop; a stop)

(9) (a) a

(12) (a11), (~~(3y

(13o) (a; a), b ~(a; b; a) (a; (a, b))

(1 4c) (al . ;aj), (bl b. . b)(a, 1b);(a; bklbk; aj)

(15) a;(aUP (a y

(1 7c) a, b (a; b Ib; a)

Production (17c) says that, under the coverage interpretation, when two events occur in
parallel, one of them will come first, and the other second, with the result being the period
between them. (1 7c) is not valid under the parallel interpretation of the parallel operator,

* since in that case the events must have occurred at exactly the same moment.

Theorem 1: The productions eliminate all . start terms.

* Proof: By induction on the number of terminals in the original expression a.



Appendix B.O I 157

Basis: k = 1. a is either (a) the terminal a, (b) a. start, (c) a. stop, or (d) (a). In
cases (a) and (c), there are no. start terms in a. (9) will eliminate nested paren.
theses, taking care of case (d). (1) will eliminate the. start term in case (b).

Inductive step: Assume the theorem is true for all expressions containing less
than k terminals. Assume a contains k terminals. Then a must be of the form (after
multiple parentheses have been eliminated by (9)):

(a) (1 y) (d) (81y). start (g) (,8 1).stop

(b) (;y) (e) ( ;y). start (h) (t; y). stop
(c)(/8,7) (f) (,,). start (i) (,y). stop

Since ,P and y each contain fewer than k terminals, they can be transformed into '

and y', not containing start terms. Substituting ft' and y' for /3 and y in the above
expressions, (a) - (c) and (g) - (i) do not contain any . start terms. Applying (2) to
(d), we get

(8 I y) . start =J . start I 7. start)

Since /3 . start contains fewer than k terminals, it can be transformed into a ,3
without. start terms, and similarly for y . start, yielding an expression containing no

start terms. The same holds true for (e) and (f) by using (3) and (4) respectively.

0

Corollary: The productions eliminate all. stop terms.

Lemma 2: Any regular expression (involving I and ;) can be converted into

standard form.

Proof: By induction on the number of terminals in the original expression a.

Basis: k = 1. Already in standard form.

4 Inductive step: Assume lemma is true for all expressions containing less than k

terminals. Assume a contains k terminals, a is either (ft ; y) or (,P I y) ,for some ft
and y. /3 and y can be converted into standard form. In the first case, by (15) and
(16),

0(8; 7) a (01 P1,21 .. I ,m; (711721 .". In)
! (ft ;71)1((f ; -Y2)1 " .. I(P ; Yn)

01 ; Y1) I' ... I(,sm; Yn)

which is in standard form. In the second case, a is already in standard form, due
to the associativity of the selection operator ("I").
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Note that converting into standard form usually increases the number of terminals (though

not the number of unique terminals).

Lemma 3: An expression a of the form (8, y), where ,8 and I are in standard

form, can be transformed by the productions into an expression not containing the

parallel operator.

Proof: Induction on the number of terminals in a.

Basis: k = 2. a = (a, b), where a and b are terminals. Apply (17c).

Inductive step: Assume lemma is true for all expressions involving less than k

terminals. Assume a contains k terminals. Since ,P is in standard form, it must be

either (a) a single terminal b, (b) a single sequence of terminals (b 1 ; ... ; bi), or

(c) an alternation of sequences/, 1,821 "" I ,m.

(a) ,P is a single terminal. y must be either (d) a single terminal, (e) a single

* sequence of terminals, or (f) an alternation of sequences. (17c) eliminates the

parallel operator from a in case (d). In (e) and (f), (10) and (11) transform a into an

expression containing subexpressions which contain the parallel operator yet

which are in standard form and involve less than k terminals, allowing the parallel

operator to be eliminated.

(b) ft is a sequence of terminals. y must be either (g) a single terminal, (h) a

sequence of terminals, or (i) a selection of sequences, which may be handled by

applying (13), (14), and (11), respectively.

(c) Use (12).

13

Conversion Theorem: The productions convert any temporal expression into

a standard expression.

Proof: By induction on the number of terminals. Let a be the original expres-

• sion where all . start and . stop terms have been eliminated using Theorem 1 and

its corollary.
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Basis: k = 1. a cannot contain a parallel operator.

Inductive step: Assume the theorem is true for all expressions containing less

than k terminals. Assume a contains k terminals. After eliminating multiple paren-

theses with (9), a is of the form (a) (,8 [ y), (b) (,8 ; -), (c) (/8,y) where P3 and Y have
had their parallel operators eliminated. In cases (a) and (b), a no longer contains a

parallel operator. For case (c), use Lemma 2 to transform ,8 and y into standard

form, then use Lemma 3 to eliminate the parallel operator.

At this point, the expression contains only sequence and selection operators,

and can be converted into standard form by Lemma 2.

Note that the proof applies regardless of the interpretation placed on the parallel operator.
Also note that all the productions ((1). (17)) were used in the proof. Thus, the set of produc-
tions has been shown to be sufficient, and appears to be necessary, to convert a temporal
expression into a standard (regular) expression.

11

4.

.4
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Appendix C
Operator Nodes

This appendix consists of descriptions of the operator nodes. The description of each

node consists of its signature (the node name followed in turn by the instantiation parameters

in parentheses) followed by an explanation and example of the computation performed by the

node. Unless otherwise noted, an output tuple is generated for each input tuple. Except for

the Cartesian and join nodes, all operator nodes are unary.

Domains are specified by the integer index of the domain (starting with 0), with -1 indicating

no domain is applicable. The time domain(s) implicit in TQuel is explicit in the update net-

work; indeed, most operator nodes take as arguments the indices of the start and stop

domains. Examples use the following primitive period relation

A (Process, B, C, D)

which has 6 dormnns: (0) start-time, (1) Process, (2) B, (3) C, (4) D, and (C- ,,top-time. See the

expianation below of this unusual numbering of domains. The example code is quite similar

to that produced by the monitor, and has intentionally been left unoptimized for easier under-

standing.

EventToPeriod (ArgDomain StopDomain); unary

Events associated with a traced primitive relation are automatically converted to periods.

The ArgDomain indicates either tMe sensor or the object domain (depending on whether the

*l event is sensor or object traced); the StopDomain specifies where the computed stop time is

to be placed. In the following example, the newly computed stop domain is appended to the

tuple, and hence must be domain 5.

Example:

4retrieve L (A.all)

(create A aczess-1)
(create eveAttoperiod eventtoperiod-I (1 5))
(link access-i eventtoperiod-I left)

P
~Projection (Result(s)); unary

-I
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The specified domains are selected from the incoming tuple and concatenated to form the

output tuple.

Example:
retrieve M (B L.B)

(create projection projection-i ((0 5 2)))
(link eventtoperiod-1 projection-i left)

ApplyOp (ResultDomain Function Argument(s)); unary

This node computes a new domain whose value is the result of performing the specified

function on one or more domains of the input tuple. The function may be any Lisp function;
special semantics are associated with arithmetic operations on temporal domains (see sec-

tion 8.6.1).

Example:
retrieve N (B L.B + L.C)

(create apolyop applyop-I (6 (lambda ($2 $3) (+ $2 S3)) (2 3)))
(link eveottoperiod-I applyop-l left)

(create projection p'ojertion-2 ((0 4 5)))
(link applyop-1 projection-2 left)

Display (Heading DomainName(s)); unary

The Display node maintains a display of the argument relation on the screen.

Example:
display N

(create display display-i (N (Start Stop B)))
(link projection-2 display-i left)

RelationStore (RelationName DomainType(s)); unary

The incoming tuples are stored in a standard Ingres relation.

Example:
store N in NRelation

(create relationstore relationstore-I

i .....
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(NRelation (time time integer)))
(link projection-2 display-I left)

StoreFile (FileName DomainType(s)); unary

The incoming tuples are stored in the specified file.

Example:
store N in file NFile

(create storefile storefile-I (NFile (time time integer)))
(link projection-2 storefile-l left)

Cartesian (StartDomain StopDomain); binary

The output tuple contains all of the domains of the two inputs. Each time a tuple enters the

left input, it is concatenated with all of the tuples that have entered the right input, with the
resulting tuples put on the output arc. An analogous process occurs each time a tuple enters
the right input.

Example:
retrieve P (BI M.B. B2 N.B)
start M.start
stop N.stoo

(create cartesian cirtesian-1)
(join projection-I cartesian-1 left)
(join projection-2 cartesian-i right)
(create projection-3 projection ((0 1 2 5)))
(link cartesian-i projection-3 left)

Selection (Predicate Argument(s)); unary

.4 ruples satisfying the predicate are placed on the output arc.

Example:
retrieve Q (L.all)
where L.B 1 1

(create selection selection-i ((lambda ($2) (eq $2 1)) (2)))

(link eventtoperiod-l selection-i left)

Join (StartDomain StopDomain Predicate Argument(s)); binary
T
The output contains all of the domains of the two inputs. Each time a tuple enters the first
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input, it is concatenated with all of the tuples that have entered the second input. The
predicate is then applied to the resulting tuple. If the predicate is satisfied, the concatenated
tuple is placed on the output arc. An analogous process occurs each time a tuple enters the

second input. This operator node is equivalent to a Cartesian operator node connected to a
"-. -Selection operator node.

- Example:

retrieve R (N.all)
where N.B = P.8
start N.start
stop N.stop

(create join join-I ((lambda ($2 $5) (equal $2 $5)) (2 5)))
(link projection-2 join-i left)
(link projection-3 join-, right)
(create projection-4 ((0 1 2)))
(link join-1 projection-4 left)

AggrOp (Function Where Class Argument Result StartDomain StopDomain); unary

The function specifies the aggregate operator (e.g., count, countc, etc.). If the value of the
where domain is -1, then the tuple is ignored. The value of the class domain is used to
partition the tuples: again, a value of -1 implies that all tuples are of the same class. The

aggregate is applied to the argument domain, with the result of the operation stored in the
resu!t domain. The where argument is derived from the where-clause and the class argument
from the by-clause.

Example:
retrieve S (B AvgC(L.B by L.C where L.0 * 1))

(create applyop applyop-1 (6 (lambda ($4) (equal $4 1)) (4)))
(link eventtoperiod-1 applyop-1 left)
(create aqgrop aggrop-1 (avgc 6 3 2 7))
(link applyop-1 aggrop-1 left)
(create projection-5 projection ((0 5 7)))
(link aggroo-I projection-5 left)

SwitchDisposition; unary

When an event is derived from a period, the disposition of the tuples must be changed from
event to period. Similarly, when deriving an event from several periods, disposition must also
be changed.

* Example:
retrieve T (L.all)
at L.start
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(create projection projection-6 ((0 1 2 3)))
(link eventtoperiod-1 projection-6 left)
(create switchdisposltion switchdisposition-1)
(link projectian-6 switchdisposltlon-1 left)

Order; unary

This node stores incoming events internally until a checkpoint tuple arrives. At that point,
the events which have times prior to the time the checkpoint was generated are output in
temporal order.

PeriodToEvent(StartDomain Stop Domain); unary

For each incoming period tuple, a start period and a stop period tuple are output.
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Appendix D
Sta rMon

This appendix describes in some detail the various algorithms and data structures
employed in StarMon, the resident monitor for the StarOS operating system. A brief summary

of this material may be found in section 8.3.

D.1. The StarOS Task Force

StarMon, being port of StarOS, is a module in the StarOS task force. Other modules in this

task force include the loader, process creator, file system, user interface, and debugger. A

task force is implemented as an object of type cataloguo (sf.e Figure D-1), representing a
mapping between module names (character strings) and modules. One of the names in the

catalogue is 'Sensor- Description', which is mapped not into a module, but into the remote
description of the sensors located in the task force (the Sensor Description Object).

Every process running under StarOS is given access to another catalogue, called the
StarOSLibrary when the process is created. One of the objects residing in the StarOSLibrary

is the monitor object (see Figure D.2). Contained in this object is everything needed by an
application process (or StarOS process) to communicate with StarMon.

D.2. The Monitor Object

The monitor object is a small object containing two words of data and several capabilities (a

capability is a protected pointer (Fabry 74]). In the figures of objects in this appendix, the data
and capability portions are separated by a heavy line.

Newly created receptacles are automatically sent to the receptacle mailbox so that StarMon

may later manipulate them. The declare and delete mailboxes are interfaces between the

garbage collector and StarMon (see section 5.5.1). Event records are placed by each sensor
into one of the pipes (so-called because they function much like Unix pipes

[Ritchie&Thompson 74]) referenced in the monitor object.

L.
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i , StarOS
SFoc NIodules

Catalogue-Module

~FTP.Module

* D.3. Pipes

The structure of a pipe is shown ini Figure D-3 and that of an event record in Figure 0-4
Event records are allocated from the event record buffer in fixed length blocks (the length is
specified in the RecordSize field). Synchronization is handled by the Stock and Queue objects

1 referenced in the pipe. These objects, supported by StarOS in microcode, allow single words
* (2 bytes) to be pushed or popped atomically. The current implementation uses 4 pipes, each

IB

The use of the stack and the queue allow multiple processes to add and remove event
records. Block addresses, which indicate the starting offset of the block in the event record

|°6
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Words/Slots ' # ofPipes •

Data Portion 1 Pipe Length

0 ReceptcleME

1 OeclareMB

2 DeleteMB

Capability Portion 3 Pipe I

Pipe N

Figure D-2: The Monitor Object

buffer of the pipe, are stored in these objects. The presence of a block address on the stack
indicates that the block contains no useful information. A block address on the queue in-

dicates the block contains a valid event record. An address on neither indicates the event
record is being entered or removed. When the pipe is first initialized, the qu,.ue contains no

entries, and the stack contains the addresses of all the blocks in the event record buffer. To
add an event record to a pipe, the address of an event record block is first popped off the

stack. The event record, in a s3uitable format, is then written into the buffer, and the address is
pushed onto the back of the queue. This set of actions is reversW-d to remove an event record:
the process pops an address from the front of the queue, copies the event record into an
internal buffer, and the pushes the address of the block back onto the stack. A stack is used

because pushes are slightly more efficient (four instructions verses six for a queue); a queue
must be used for the addresses of the filled blocks in order to implement a first-in-first-out

strategy.

Since the operating system guarantees indivisibility of the push and pop operations, the

store and remove event record operations described above are also indivisible with respect to
an individual event buffer. If an error occurs when a block address in on neither the stack nor

the queue, then in worst case the address is never pushed, and the use of the block is
effectively lost (this condition is difficult to detect, because the process may be waiting to be
rescheduled to finish processing the event). However, the information contained in the other

blocks is not corrupted in any way as the result of a block address being lost. Unfortunately,
since the buffer is shared by all processes having capabilities for the pipe, valid event records

can be corrupted if address not within the block indicated by the popped address are written.
Since the code for the store and remove operations is small, and only needs to be written

once, the probability of an error occurring due to incorrect logic is rather small.
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Words/Slots Record Size

1 Mi'd Events

Data Portion Event

Record

Buffer
U Stack

Capability Portion

Figure D-3: The Structure of a StarOS Pipe

D.4. Receptacles and Sensors

A StarOS receptacle (see Figure D-5) is an object containing a few words of data and three

capabilities. The Name field contains the remote name for the object containing the recep-

tacle, and the Target field contains the internal name (i.e., the capability) for the same object.
The DeclareMd field contains a capability to another StarOS object. a mailbox, where the

sensor can send capabilities to be placed in StarMon's internal tables. The DeclareMB field of
the Monitor Object references the same mailbox. Capabilities are sent to MonProc because
the event records, sent to the StarMon Accountant, may not contain capabilities, primarily for

efficiency reasons. All three fields are not functionally necessary, and are present simply to
make event record storage a faster operation. Each receptacle also contains a capability in
the Pipe field for one of the pipes in the monitor object. The Lock field is used for arbitrating
modifications to this receptacle by multiple MonProc processes.

Space in each object to be monitored must be provided; the StarOS implementation re-
quires one data word and one capability (a total of six bytes). The data word simply indicates
whether the capability is present and is included for efficiency, since checking for a null

receptacle capability is a relatively expensive operation (16 instructions), whereas checking

for a 0 word is much cheaper (3 instructions). An average receptacle of 64 events is only 26

bytes long. Since the average si.e of a StarOS object is approximately 1800 bytes, this
represents a memory overhead of less than 2%. S-sors are implemented as macro calls

* which expand into inline code (see section 8.2.1).
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BytesrI
Lenth Type 0

2
Sensor Name 4

I Event 6 1 Internal

Object Name

Timestamp
(Optional)

User-Defined
Domains

" (Optional)

Figure D-4: Structure of an Event Record

When a sensor is invoked. it first checks the data word in the object to determine if there is
a receptacle (since the macro invocation takes place within the type manager for the object

containing the receptacle, the position of the receptacle, i.e., the offsets for the data word and
the capability, is known). Determining that there is no receptacle requires 14.7 microseconds

(equivalent to two store operations). If there is a receptacle, then it is made addressable and

the enable bit for that event is tested. If the event was disabled, the sensor took 165
microseconds, equivalent to 23 store operations. This time depends strongly on how often

the sensor executes, due to interactions with cached object descriptors. It is anticipated that
receptacles will reside in the descriptor cache most of the time.

6 Otherwise, the event is enabled, and the event record is written into the pipe as described
above. If there are no addresses on the stack (indicating that the pipe is full), the sensor can
choose to busy wait or to discard the event record, (indivisibly) incrementing the
MissedEvents field of the pipe or the receptacle. Note that it is unnecessary to store all three

names (performer, object, initiator) in the event record, since one of these names will always

be identical to the Name stored in the receptacle. The resident monitor is responsible for

placing this name ir the event record before sending it to the remote monitor.

In order to reduce the overhead of the sensor macro, and to take advantage of the multiple

* processors in Cm*, the formatting, storage, and transmission of the event record is broken

into two stages, the first performed by the sensor macro, and the second performed by a

I.
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Words/Slots
0 Lock

1Name

Data Portion 2 Miss'd Events

3 # Enable Bits

Enable

Bits

0 Target

Capability Portion 1 Pipe

DeclareMB

Figure D-5: The Structure of a StarOS Receptacle

process of the resident monitor asynchronously with the execution of the sensor. The sensor

macro is responsible for checking the enable switch ,nd writing the event record into the
pipe's event record ouffer. The resident monitor is responsible for removing event records

from all the p:,es, collecting them into packets, and handling the protocol for transmitting
these packets across the network to the remote monitor. Since the type manager and the

StarMon Accountant are probably running on different processors, the overhead of event

generation is only that incurred by the sensor, which is optimized to the possible detriment of
StarMon's efficiency. This arrangement is possible because StarOS allows shared memory,

specifically, the event buffers in the pipes, between processes in different task forces (the

sensor and StarMon may be in different taskforc-es). Although Medusa, the other operating
system on Cm*, does not allow shared memory between processes in different task forces, it

does provide a pipe mechanism which can be used to send events from the task force to the

resident monitor.

The store event record operation provided by the resident monitor is implemented as the

sensor macro, and the access receptacle operation provided by the type manager is imple-
*l mented by passing the word and capability offsets to this macro (see section 5.2). Note that

these optimizations in the event storage mechanism do not constitute typing violations;

rather, they imply efficient implementations of operations on a typed object. The type

managers are not required to be separate processes; in this case, the operations of the

resident monitor on receptacles are implemented partially as a macros within other type

managers. and also as code in a collection of processes. Although these changes are consis-

tent with the type model, they have altered the semantics of the store operation: instead of the
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store event record operation of the resident monitor being invoked with the event record data

as parameters, the event record is stored in the pipe referenced by the receptacle at the time
the event occurred, and asynchronously removed by the resident monitor at a later time. The

primary advantage is that as little work as possible is performed synchronously with the ex-

ecution of the operation being monitored, lowering the overhead of monitoring that operation;

the disadvantage is that an arbitrary amount of time elapses between the occurrence of the

event and the recording of the event at the resident monitor. If this time lapse is unaccept-
able, then an event notification mechanism must be devised. Event notification may also be

necessary to inform the StarMon Accountant that a pipe is becoming too full.

Several notification actions were considered in the StarOS environment, including sending
a data message to a notification mailbox, sending a capability message containing the
relevant receptacle to the mailbox, invoking a StarMon process, or setting a field in a shared

data structure. The final strategy adopted for notification shares characteristics with each of
these alternatives. The StarMon Accountant continuously cycles through the pipes, checking

to see if any new event records were added. Since this check is very fast (the StarMon
Accountant simply tries to pop an address off the queue of each pipe), the delay is com-

parable to tile delays induced by the alternatives listed above. All of these notification
mechanisms fail if the event generation rate is high, since, in that case, the StarMon Account-

ant will be continually struggling just to keep up with the sensors, emptying the pipes before

the event record buffers become full. Ultimately, determining whether to use the resident
monitor invocation or the storage in receptacle/notify resident monitor mechanism is used

depends on the relative efficiencies of the various operations under thle given operating sys-
tem. The experience with StarOS and Medusa has indicated that the time lapse between

event occurrence and notification was not an important issue in most cases, and was accept-
ably short in the cases where it did matter.

There is one further advantage to the partitioning of the event storage operation into a

synchronous and an asynchronous portion: self-monitoring is permitted. For instance, sen-

sors may be placed in StarMon, even within the code which assembles packets and handles

the protocol with the remote monitor, without triggering the generation of an infinite number
of event records. Since a sensor does not invoke a StarMon process when storing an event
record, it is possible for other parts of the operating system. in particular the scheduler, to

treat the monitor as any other process. and to generate event records concerning the be-
havior of that process. These event records will be identical to other event records in format

and potential for manipulation.
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D.5. A Microcoded Sensor

A microcoded version of the sensor was designed to determine the maximum space and

time efficiency possible on Cm*. The resulting algorithm is (intentionally) similar to the other

* . microcoded operations in StarOS, in general trading longer execution time with smaller
microcode storage requirements and shorter programmer time [Jones&Gehringer 80]. It

would take an experienced programmer familiar with the current StarOS microcode an es-
timated two months to implement and test the version presented below [Vegdahl 82].

This section will merely sketch the design of the microcoded version in order to give the

reader an impression of how the operation would work. The instruction is invoked (as are
most of the StarOS operations) by writing the address of a parameter block to a particular

address. This parameter block is assembled by a Bliss/1 1 macro at compile time and need not

be the concern of the programmer. The components of the parameter block are shown in

Figure D-6. The first two locations are set on exit from the instruction. The remainder of the
parameters are identical to the ones in the other version of the sensor (all versions have

identical semantics--they all write identical event records into the appropriate pipe). The
Receptacle parameter contains the address of an object, as well as the offset of the recep.

tacle capability within the object. The Domain Types component encodes the types of all the

domains, with four possible types per domain. It and the DomainValues may be omitted if

there are no domains.

The size of this version shown in Table 8-1 is the sum of the size of the parameter block and

the size of the code necessary to load the domain values into the parameter block and invoke

the microcode.

The time required by this operation is harder to derive. For existing microcoded operations

previously measured, it is possible to predict the executio.n time by simply multiplying the

number of memory references executed by the operation by 10
microseconds [Jones&Gehringer 80). Applying this approximation to the microcoded opera-

tions most similar in complexity to the sensor operation. results in calculated execution times
* within 5% of the actual in all but one case.

A crucial assumption in this approximation is that the execution time is evenly split between

external memory references (at 4.7 microseconds each) and internal processing. The primary
indication that this may not be the case with the sensor operation is the complexity of the
operation word in the parameter block, which requires extensive unpacking. Note that there
is not a simple space-time trade-off here, because an attempt to reduce the execution time by

piacing the fields in separate words in the parameter block, thereby increasing the space

- quirements, might actually increase the execution time due to an increased number of
* n- mory references to access the parameter block.

0
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Bytes

Error Code 0

ErrorData 2

Receptacle 4 15 1312 10 98 7 0

Operation 6 - I D1 E ITII Event #

Domain Types 8 N: Number of Domains (0-7)
D: Declare Object?

Domain Values E: 0: Assume Enabled
L J 1: Don't touch the Store Enable

2: Clear the Store Enable
3: Check the One-Time Enable

T: Timestamp?
I: Internal?

Figure D-6: The Parameter Block for the Sensor Instruction

D.6. Efficiency

To determine the relative costs of the individual features of the sensor operation, a variety
of sensors were specified and measured. Each sensor was run at least 10,000 times on a
dedicated processor. The code was changed slightly so that the pipe never filled up, in effect
isolating the efficiency of the sensor from the rest of StarMon. All the sensor code was local

to the processor, and multiplexing of the processor among several processes was disabled. In

addition, constraints on the address space were relaxed to allow the sensors to execute as
efficiently as possible (this is essentially another space-time tradeoff). The complete sensor

descriptor 'ile for the test sensors is shown in Figure D-7.

.
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(comment Sensor definitions for determining speed of sensor Calls)

(taskforce (name RSTest)
(Simonfilename RSSimon)

* (sensorprocess (name RSProcess)
(requirefilename RSPSen)
(rsslot TestSlot)
(clockpage ClockPage)

(objecttype (name RSObject)
(rsslot 0)
(wordoffset 0)
(requirefilename RSOSen)

(event (name Shortest)
(location RSProcess)
(minortype sensortraced)
(assumeenabled t)
(waittime -1)
(spacetimeratlo 0)

(event (name Short)
(location RSProcess)
(minortype sensortraced)
(waittime -1)
(domains (domain (name ADomain)

(type Integer))

(spacetimeratlo 0)6 (timestamp t)

(event (name Medium)
(location RSProcess)
(minortype sensortraced)
(waittime -1)6 (domains (domain (name Aoomain)

(type Integer))
(domain (name Dbl~omaln)

(type DoubleInteger))

(spacetimeratlo 0)
(timestamp t)

(event (name Long)
(location RSProcess)
(minortype sensortraced)
(waittime -1)
(domains (domain (name Aoomain)

(type Integer))
(domain (name OblOomain)

(type DoubleInteger))
(domain (name StrOomain)

(type String))

(spacetimeratlo 0)
* (timestamp t)

... rest of the file

Figure D-7: Sensor Description File for Measuring Sensors
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Appendix E
An Extended Example

The purpose of this appendix is to illustrate the steps required to monitor an application

program. Although the implementation of the monitor is far from complete, this appendix will

attempt to demonstrate that the major functions have been implemented, and that it is pos-

sible to monitor an application using the relational paradigm. A second purpose is to stress

the ease of installing sensors and retrieving and computing high-level monitoring information.

The steps necessary to monitor an application are as follows:

e create a sensor description file (SDF);

- send the SDF through the preprocessor (DFPre) to obtain several intermediate

files;

. make minor changes to the source code of the application program to add the

sensors;

e compile, link, and load the program onto Cm*;

* invoke the remote monitor; and

.4 * present the remote monitor with a query, which is then compiled into an update

network and executed.

All relevant files and terminal sessions will be reproduced here. It is important to note that

these listings have not been edited or altered, except as explicitly noted. The reader can be

assured that nothing is going on "behind the curtain". Unfortunately, this decision implies

that various peculiarities will be present in the displays. Some of the peculiarities are the

result of features irrelevant to the present discussion; others could be eliminated through

straightforward changes in the code. The reader is requested to be patient and to ignore all

manner of quirks in the listings.

4
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r. E.1. Sensor Description File Processing

The application to be monitored, the partial differential equation program, or PDE, has
already been discussed in section 3.7. The PDE is a collection of Bliss/1 1 [Wulf et al. 75b] and

* Task [Jones&Schwans 80] code. The Bliss/1 1 portion contains the algorithms to be used in

* the individual processes, and the Task portion specifies how data structures are to be shared
-- among the processes and where the components are to be placed among the processors in

Cm*. Task is currently specific to the StarOS operating system [Jones et al. 78]; there is a
somewhat analogous language and compiler for the Medusa operating system [Ousterhout et
al. 80]. For the remainder of this discussion, the use of StarOS will be assumed.

The first step in monitoring an application is to determine what sensors are desired, where

these sensors are to be placed, and what attributes each sensor should have. This infor-
mation is placed in a sensor description file (see section 8.2.1). Figure E-1 contains the
complete listing of the sensor description file (SDF) for the PDE. This file is generated by the

*user.

(taskforce (name POE)
:: (simonfilename pdesen)

(sensorprocess (name POESolver)
(functionnumber 2)
(requirefilename solsen)
(rsslot SPLastCapa)

(event (name Iteration)
(location PDESolver)

(timestamp t)
(domains (domain (name iternum)

(type integer)). )
(minortype sensortraced)[" )

Figure E- 1: PDE Sensor Description File

[,I The SDF for the PDE contains descriptions for three objects. The taskforce object has two
attributes: a name (PDE) and a simonfilename (pdesen). The latter is the name of the file

[. where the remote description for this SDF will be placed (see below). There is one
[. sensorprocess object for each process containing a sensor. The requirefilename attribute

specifies the name of the require file to be generated by DFPre, containing Bliss macros for
i the sensors contained in the PDESolver process. The other two attributes are specific to

StarOS and will not be discussed here. The event object describes a particular sensor called
Iteration, located in the PDESolver process. This sensor will generate event records contain-
ing a timestamp and one user-defined integer domain called iternum. A minortype of sen-

sortraced specifies that this sensor will be traced (as opposed to sampled) and that it will be
l - enabled by a switch in the receptacle associated with the process containing the sensor.

I
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The SDF contains virtually all the information required by the monitor. It is read by DFPre,
which produces a remote description file and one or more require files (see Figure 8-5).
DFPre is a MacLisp program running on a DECSystem-1O (all software development for Cm*
is done on the DECSystem-1O, with the object code sent to Cm* over the Ethernet). The
dialog between DFPre and the user is illustrated in Figure E-2. As with all dialogues in this
appendix, responses by the user are underlined.

* After initializing itself, DFPre asks for the description file type. The "s" response instructs

DFPre to read the description file format for StarOS sensor descriptions; a portion of that file
is shown in Figure E-4. The name of the sensor description file is requested. The SDF is read
in, with DFPre printing the names of the objects as they are encountered. The require file print
command results in the generation of require files, one per sensor process (the names of the
require files appear in the SDF as requirefilename attributes). The OBJ output command
results in the generation of the remote description (whose name is the value of the simon-
filename attribute).

The one require file produced from the PDE sensor description file is shown in Figure E-3.

The primary component of this file is the definition of the ITERATIONSENSOR macro, defined
to be a call of the highly parameterized StarMonSensor macro. The details of this macro are
not relevant here; the point to be made is that by preprocessing the SDF, a sensor can be
exactly configured to its specification in the SDF.

E.2. Description File Formats

As was mentioned both in the previous section and in section 8-5, the allowable classes
and attributes for a sensor description are defined in a description file format (DFF) file, read
by DFPre during its initialization. The DFPre file for StarOS sensor descriptions is shown in
Figure E-4. The important aspects to note are

* The syntax is identical to other description files.

* For each object (e.g., taskforce, event) defined, there are two groups of attributes
specified, input attributes (those present in the input file), and output attributes
(those written to the remote description), along with their types.

* DFPre can be configured easily by simply modifying the corresponding DFF file.

DFPre is similar to a language-independent parser, which is given the grammar for a lan-
guage (c.f., the DFF file) and a program in that language (c.f., the sensor description file),K producing a parse tree of the program (c.f., the remote description).
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".' r mac13o

MacLisp for MONITOR

Initializing
*(prepnro e ss) run the preprocessor

Description File Preprocessor

- Description File Type: M(edusa sensor) S(tarOS sensor) T(ask name)
H(elp) Q(uit): I

Initializing description file format specification

Name of sensor description file: gfl
Processing DSK:PDE.SDF[X335SMON] ...

POE DFPre Is reading the SDF
POESOLVER

*T ITERATION

* Resolving forward references ...

Command: N(ew file) O(BJ output) R(equire file print) S(ummary print)
H(elp) Q(uit): .1

Summary statistics:

Number of sensor locations: 1.

*- Number of object types: 0.
- Number of events: 1.

Sensors:
"- POESOLVER:

(ITERATION)

Object Types:

Command: N(ew file) O(BJ output) R(equire file print) S(ummary print)
*H(elp) Q(uit): r

Producing require files ...
Producing DSK:SOLSEN.DFS[X335SMON] ...

Command: N(ew file) O(BJ output) R(equire file print) S(ummary print)

H(elp) Q(uit): 2

Producing DSK:PDESEN.M11[X335SM0N] ...

*0 Command: N(ew file) O(BJ output) R(equire file print) S(ummary print)
H(elp) Q(uit): l

Figure E-2: Dialogue with DFPre

0.

0
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SWITCHES NOLIST;
IThis file defines the sensors for the PDESOLVER activity.

require rs.dfs[x335smOn];
external RSExlsts;

MACRO
MakeInternalRS(PipeWindow.TempSlot)

(EXTERNAL MakeReceptacleSet;
MakeReceptacleSet(O, RSExists .SPLASTCAPA, Pipe .1,WindowTempSlot)
)$,

ITERATIONSENSOR(Window,NO007)

StarMonSensor(a'RSEXISTS.SPLASTCAPA.1,1,1,2.O.1,1.100 ,.O.Window.INTTYPEN007)S
NumberOfSensorEvents-1$;
SWITCHES LIST;

Figure E-3: Definitions File Produced From PDE SDF

E.3. Changes to the Source Code

In addition to writing an SDF, the user must also make a few minor changes to the source

code. Three lines must be added to the Task portion: one specifying that a remote description
(placed in the file named PdeSen by DFPre) is to be included in the task force,

SensorDescription: New Basic (Source=("PdeSen<C1>"));

and two specifying that code for creating receptacles (the MakeRS routine) should be in-

cluded in the process,

"MakeRS[ X335SMON ] ( GO) ",

and

"MakeRS[X335SMON](CP)",

Minor changes to the task compiler and process creator in StarOS would obviate the need for

these modifications.

Three lines must also be added to the Bliss portion of the PDE. The first line is added at the

beginning of the program, instructing the compiler to read the require file generated by

• tDFPre:

require SolSen.DFS;

The second line is placed in the initialization code for the process, causing a receptacle to be

created for the process:

MakelnternaIRS(l, LocalWindow, SPWorkWindow);

This line could be eliminated through a minor modification in the process creator. The third

line is the sensor itself, placed in the desired position, in this case, at the end of the iteration

loop:

IterationSensor (LocalWindow, .niter[.pci]);

LocalWindow is a temporary storage location for use by the sensor, and .niter[.pci] is the

value for the user-defined domain called iternum. At this point, the program is compiled and

linked into an executable load module, ready to be loaded into Cm*.
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Sensor Descriptor File (SOP) format specification for StarOS

(general (filedefault ".sdf")
(procnodefunctlon StarOSprocnode)

(commandfunction StarOS~oConimand)

(fleldtypes (domaintype string integer doubleinteger)
(mtype objecttraced sensortraced receptaclesampled messagesampled

)noainsmld

(input (specifies taskforce)
(name atom)
(simonfilename atom) ;default: name
(version fixp) ;default: 0
(documentation anything)
(doc anything)

(output (specifies taskforce)
(systemname string)

K (year integer)
(month iliteger)
(day integer)
(hour integer)
(minute integer)
(version integer)
(sdfilename string)

(input (specifies event)
(name atom)
(location sensorprocess)
(object objecttype)
(timestamp boolean)
(domains domain)
(declareobject boolean)
(minortype mtype)
(assumeenabled boolean)
(chackonetime boolean)
(assumeonetime boolean)
(spacetimeratlo fixp)
(waittime fixp)
(documentation anything)
(doc anything)

*(output (specifies event)
(location sensorprocess)
(object objecttype)
(timestamp boolean)
(domains domain)
(enableindex integer)
(minortype attributename)
(internal boalean)

... remainder of the tile

Figure E-4: The Description File Format (OFF) File for StarOS Sensor Descriptions

L
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The changes to the code for the PDF were examined here in such detail to emphasize how
little needs to be done to monitor a program. The use had to write an SDF (16 lines long) and
add 6 lines to the program, 4 of which were functionally unnecessary. A highly efficient
sensor (discussed in appendix D.6) and a remote description of the SDF were created
automatically by DFPre, and the remote description loaded with the rest of the code.

Before discussing how the rest of the monitor interfaces with the running program, we must
examine how the monitor is started up.

E.4. Initializing the Monitor

As described in section 8.1, the monitor consists of two components: a remote monitor,
executing on a Vax, and a resident monitor, executing on Cm*. The remote monitor is called
Simon, and the resident monitor for StarOS is called StarMon. When StarMon is invoked, it
immediately goes into a quiescent state, awaiting a packet from Simon. This behavior is
consistent with the steady-state situation, where StarMon is the slave and Simon the master of
the communication protocol (see section 8.4).

Figure E-5 illustrates the initialization sequence from the viewpoint of Simon running on a
Vax. Recall that Simon is composed of three communicating processes: the parser, the TQuel
compiler and update network, and the remote accountant (see Figure 8-2). Ideally Simon
would present a unified user interface. However, to ease the task of detugging Simon, the
process containing the compiler and update network also accepts commands from the user
(the remote accountant was debugged indirectly through this process).

The simonupdate command starts up the latter two processes. The new prompt (an integer)
indicates the user is now talking the FranzLisp. The initialization sequence is started with the
initacc command. First, the remote accountant is located through interprocess communica-
tion (IPO) calls, and a packet is sent to StarMon. StarMon responds with an acknowledge-
ment, followed by event records identifying the modules of the operating system. The com-

* •mand run 1 m instructs Simon to process incoming event records for one minute, and then
wait for further commands from the user. A modification to Simon allowing it to wait for event
records and user commands (via the parser process) concurrently is relatively straightfor-
ward.

Some of the event records cause Simon to display a message. For example, the message
[The Loader component of the catalogue 41552 is 41414.]

indicates that Simon received an event record stating that a component of the catalogue
41552 (the external name of the StarOS task force, implemented as a catalogue of operating

* system modules) with the string name "Loader" is the object with the external name 41414.

a
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[shell] simonuodate
... i messages from FranzLlsp
1. inltacc 0
[Trying to locate Simon Accountant ...)
[Located Simon Accountant.]
[Waiting for Ethernet connection with the reside monitor...)
[Connection established.]

* [Processing the operating system taskforce(s) ...

[The Catalogue-Module component of the catalogue 41552 is 41389.]
- [The FTP-Module component of the catalogue 41552 is 41539.]

[The Garbage-Collector component of the catalogue 41552 is 41367.]
[The Loader component of the catalogue 41552 is 41414.]
[The Nucleus component of the catalogue 41552 is 41248.]
[The Object-Manager component of the catalogue 41552 is 41230.]
[The Process-Module component of the catalogue 41552 is 41240.]
[The PUP-Module component of the catalogue 41552 is 41499.)
[The Reconfiguration component of the catalogue 41552 is 41259.]
[The Sensor-Description component of the catalogue 41552 is 41544.]
[The Six12-Debugger component of the catalogue 41552 is 41491.]
[The SENSOR description for the taskforce 41552 is 41546.)
[Defining the TASKFORCE STAROS.]

... other objects and domains are defined
[Defining the DOMAIN INDEX.]
2. run I m
[CheckPoint received: Time: 275951.]
[Initializing event number 1: DESCRINTEGER.]
[Initializing event number 2: DESCRSTRING.]
[Initializing event number 3: DESCRENO.]
[Initializing event number 4: COMPONENTSTRING.]
[Initializing event number 5: COMPONENTINTEGER.]
[Finished the STAROS taskforce SENSOR definitions.]
[The Rick component of the catalogue 41555 is 41581.]
3. showstatus
Status of the Remote-Resident Monitor Interface

There were 141 event records processed.

The defined task forces are:
Taskforce tf-00014:
STAROS Sensor Description File:
(Definition in DSK:STAROS.SDF[X335SMON] (version 1).

processed on July 18, 1982. at 15:12):
DESCRINTEGER ((ATTRIBUTE: INTEGER) (OBJECT: INTEGER) (VALUE: INTEGER) )
DESCRSTRING ((ATTRIBUTE: INTEGER) (OBJECT: INTEGER) (VALUE: STRING)
DESCREND (Timestamped) ()
COMPONENTSTRING (Timestamped) ((COMPONENT: DOUBLEINTEGER) (NAME: STRING)
COMPONENTINTEGER (Timestamped) ((COMPONENT: DOUBLEINTEGER) (INDEX:

INTEGER)
Components:

Catalogue-Module 41389
... rest of the components
Sixt2-Oebugger 41491

Figure E-5: Initialization Dialogue from Simon's Perspective
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After the components of the operating system catalogue have been sent, StarMon sends
the remote description for the operating system itself. Finally, the components of the
catalogue of users is sent, indicating one user. The showstatus command illustrates that one
task force has been defined (the StarOS task force), containing five sensors and eleven
components. This description was in fact bootstrapped over the Ethernet: the first three
sensors listed were the ones which sent the description in the first place. Note that the
initialization sequence required 141 event records to be transferred to Simon from StarMon.

4. (GetComponents Rick)
1
5. run 10 s
[The Library component of the catalogue 41581 is 41552.)
[The M component of the catalogue 41581 is 41647.)
[The P component of the catalogue 41581 is 41814.)
[The User component of the catalogue 41581 Is 41555.)
6. (GetComponents P)

' 1

7. run 30 s
[The POEModule component of the catalogue 41814 is 41787.]
[The Sensoroescription component of the catalogue 41814 is 41786.)
[The SENSOR description of the taskforce 41814 is 41786.)
[Defining the TASKFORCE PDE.]

other objects and domains defined
[Initializing event number 6: ITERATION.]
[Finished the PDE taskforce SENSOR definitions.]
8. showstatus
Status of the Remote-Resident Monitor Interface

There were 196 event records processed.

The defined task forces are:
Taskforce tf-00014:
"TAROS Sensor Description file:

Catalogue-Module 41389

Six12-Debugger 41491

Taskforce tf-00058:
POE Sensor Description file:
(Definition in DSK:PDE.SDF[X335SMON] (version 0).

processed on July 24. 1982, at 16:32):
ITERATION (Timestamped) ((ITERNUM : INTEGER)

Components:
POEMODULE: 41787
SENSORDESCRIPTION: 41786

9.

Figure E-6: Retrieving the Information Concerning the PDE

At this point, the initialization sequence has completed, and Simon knows about the sen-

sors located in the operating system, including those sensors within StarMon. The PDE is
loaded into StarOS, and the dialogue shown in Figure E-6 is followed. The components sen-
sor is sampled by giving a GetComponents command; the information returns in subsequent
event records, as shown. The argument of this command is the external name for a catalogue,
in this case, the user catalogue associated with Rick (object 41581). This catalogue contains,
among other things, all modules loaded by this user. Since the PDE had been loaded under
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the name "P", its components are requested. StarMon notices that one of the components
has the name "SensorDescription"; it assumes the component contains a remote description,
and it automatically sends the information in this component to Simon. The showstatus
command now lists two task forces, the StarOS task force and the PDE task force. Since the
PDE taskforce is less complex, only about 50 event records were required to send its descrip-
tion.

E.5. Query Processing

Simon now knows about two taskforces containing six sensors. Simon fully supports the
" -conceptualization of a temporal database, so these sensors correspond to primitive relations

which can be referenced in TQuel queries. Since the ITERATION sensor is sensortraced,
there is an associated primitive period relation (recall that traced events are automatically
converted to period relations consisting of two domains, the process containing the sensor,
and one user-defined domain):

ITERATION (PROCESS ITERNUM)

This relation is used in the example queries in section 3.7, written as a macro in Figure E-7.
This macro has two parameters, specifying the external names for the processes participating
in the query. The backslash at the end of each line indicates that the macro extends to the
next line (macros are us.i dy terminated by the end of the line).

(define: examplequery $1 $2;
range of A is Iteration
range of B is Iteration
retrieve AOverB (Diff = B.IterNum - A.IterNum) \
where A.Process $1 and B.Process $2

and A.IterNum > B.IterNum + 1

range of AB is AOver8
retrieve Over (Percent = AvgC(AB) * 100)

retrieve Catch
where A.Process = $1 and B.Process - $2

and A.IterNum B.IterNum
when A.Start ; B.start
at B.start

display Over. Catch

Figure E-7: PDE Query Contained in the file demoquery

0 This query is parsed by the process invoked by the simonmonitor command (see Figure
E-8). This program was derived from the terminal interface and parser for Ingres. It therefore
shares many nice features with the Ingres system, including a command to invoke the editor,
a complete macro facility, command files, etc. Commands are preceded with a backslash; the
"\t" command prints the day, date, and time; the "\s" command escapes to the Unix shell,
the command interpreter [Bourne 78] where other programs can be run; and the "\i" com-
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mand reads a file (in this case, the file containing the examplequery macro) into the
workspace. Text not preceded by a backslash (e.g., examplequery 41521 41653) is inserted

directly into the workspace. 41521 and 41653 are external names of PDE processes; these
names were obtained by ad hoc means 2 , although in the future there will be a sampled
sensor in StarMon for finding the processes associated with a specified task force. The "\g"
command causes the contents of the workspace to be evaluated and a parsetree written to
the file named parsetree, and the "\q" command causes an exit from the program. The
parsetree file (containing 74 nodes) is then displayed on the terminal (the cat program in Unix
displays one or more files on the terminal), and the shell is exited using the tD key, bringing us
back to the process containing the tquel compiler and the update network.

9. shell invoke the shell (the user interface for Unix)
[shell] simonmonitor
SIMON version 0.2 (7/26/82) login
Wed Jul 28 19:58:43 1982
go

Wed Jul 28 19:59:10 1982

*\i demLauery

continue
• exampleauery 41521 41653

Executing . . .

continue"*\r

go

SIMON version 0.2 (7/26/82) logout
Wed Jul 28 20:01:21 198Z
goodbye rts -- come again
[shell] cat parsetree
(2 12 13 ITERATION 0 0)
(3 0 35 A 2 0)
.•.. the rest of the parsetree
(75 0 34 nil 74 0)
[shell] .D
10.

Figure E-8: Parsing the Query

The parsetree file contains the parse tree in a linearized form. The nodes in the tree are
listed one per line. The first integer is the node's index; the second integer specifies the type
of node; the next two values specify auxiliary information in the node, and the last two in-
tegers specify the indices of the left and right sons of ine node. This file is generated by a
bottom-up scan of the parsetree, and is similar in use to the LG (linear graph) files developed
in the PQCC project [Leverett et al. 80].

28The external names of processes were obtained when the PDE task force was invoked on Cm. Each process
created its receptacle and sent it to StarMon, which then extracts the external name of the process from the
receptacle and displays it on the terminal.
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The TOue compiler Is invoked with a processquery command in FranzLisp, resulting In an

update network for the query (see Figure E-9). This command reads the node descriptions
from the file named parsetree, constructs an internal parsetree, and generates an update

* networlt fo- the query. This update network is-specified by a sequence of primitive construc-
tor fun ;c ,s (c:-eateaccess, createop, and link--see section 6.5). Since automatic enabling of

sens&: has not yet been implemented, the correct sensors must be enabled by the user
through commands on the Vax. The enableevent command takes two arguments, a sensor
name and an external object name. There is an analogous disableevent command : g.

To illustrate tuples flowing into the network, a few primitive constructor functions are ex-
ecuted by the user. The PDE is then started, causing event records to be sent across the

Ethernet and converted into tuples which flow through the update network until they en-
counter a display operator node, causing a message to be printed on the terminal. Finally, the
sensors must be disabled by the user through commands on the Vax.

The actual event records flowing over the Ethernet from Cm" were not interesting, so a set

of 25 event records were constructed to produce interesting results. The fakeaccess func-
tions (see Figure E-10) were loaded, and the testupdate command executed to read the test
event records from a file and send them through the update network. The input tuples
resulted in 7 output tuples. Recall that Catch is an event relation with no explicit domains, and

that Over is a period relation with one temporal domain called Percent. The value of this
domain at, say, time 300 can be derived from the tuple valid during the time [285-316]:

Percent = (10000 + 100 *(300-285)) / (277 + 1* (300-285))

= 39.4%

The last few lines provide statistics used in analyzing the performance of the update network.

The results of this analysis are discussed in the final appendix.

.92The external object names currently must be given as signed integers. Hence, the external object name 41521
Is entered as -24015.
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10. proceasauerv
Processing statement I1... range of A I&-.
Processing statement 2 ... rang, of 8 li.
Processing statement 3 ... retrdeve AOvw'..
f(creatoaccess ITERATION access-00377)J
[(createop eventtoperiod stop-0037a (1 4))3
[(link access-00377 etop-00378 left))

Other constructor function
(link applyop-00390 projection-00392 left)]

Processing statement 4 ... range o AS AL..
Processing statement 5 ... retrieve Over..
((createop aggrop opAVGC-00393 (opAVGC -1 -1 -1 3 0 1))]

l(1ink spplyop-00398 projection-00400 left))
Processing statement 6... retrieve, Catch...
[(createaccess ITERATION access-00404)J

Prossing statement 7...dlpyOv..

It. mnableevent ITERATION -24015
(Enabling event ITERATION (taskforce: POE class: 2) for object 41621.3
12. enablaevent ITERATION -23=8
[Enabling event ITERATION (taskforce: POE class: 2) for object 41653.)
13. (createaccess ITERATION a-11
((&record . nouainstance) ...
14. (createco display d-1 (ITERATIONII
((&record . nodeinstance) ...
15. (link a-i d-11
nil
16. run 30L
Display (d-1): ITERATION: (ITERNUN)
<ctuple [2908341- ]: event
((2 :41521) (3 : 0) (4 :2)
Display (d-1): ITERATION: (ITERNUM)
<tuple [2906353- ]: event
((2: 41653) (3 :0) (4:1)

iDis*play (d-1): ITERATION: (ITERNUM)
.ctuple [2911736- ]: event
((2 : 41853) (3 :0) (4 : 4)
17. disable ITERATION -24015
[Disabling event ITERATION (taskforce: POE class: 2) for object 41521.)
t
18. disable ITERATION -23883
[Disabling event ITERATION (taskforce: POE class: 2) for object 41653.]
t

1 4 Figure E-9: Compiling and running the update Network

14
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19. load fakeacceua
t
20. testuodate 41521 41853
(Enqueving fake data from theslsdemo/testdata.]
Start: (6146 0) Display (d-1): ITERATION: (ITERNUN)
<tuple [0-* J:event
((2 :41521) (3 : 0) (4 : 1)

Display (d-1): ITERATION: (ITERNU1N)
<tuple [838- ]: event
((2 : 41663) (3 : 0) (4 :6)
Display (display-00433): CATCH: (START)
ctuPle E0' 3: event
nil>
Display (d13Play-00433): CATCH: (START)
,ctuple (91- 3: event
nil>

Display (display-00433): OVER: (START STOP PERCENT)
<tuple (0-8]: event
((3 : (0 01 0)))>
Display (display-00433): OVER: (START STOP PERCENT)
<tuple [8-15]: event
((3 : (100 0 1 0)))>

Display (dlsplay-00433): OVER: (START STOP PERCENT)
<tuple (285-316]: event

* ~. ((3 : (10000 100 277 1))>~
Display (display-00433): OVER: (START STOP PERCENT)
<tuple [316-321]: event
((3 :(131000 100 308 1)):,

Display (display-00433): OVER: (START STOP PERCENT)
<tuplo [594-6013: event
((3 : (34500 100 586 1))>~
Stop: (7875 947). compute: 782
< *runq* (runqentry): 1309 enqueues, not traced.
Length: (Initial: 10) (Delta: 10) (present: 282) (Filled: 0)>
2 1. nA&U
[shell]

Figure E- 10: Running the Update Network Using Generated Event Records
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Appendix F
Update Network Performance

This appendix provides the details of the measurements of the update network. As dis-
cussed In section 8.6.3, three sets of measurements were taken: one with the update network
generated by the existing compiler, one with this network hand optimized using the strategies
discussed in section 7.2, and one with Usp functions generated by hand from the optimized
network, using only strategies that could be readily implemented. All three versions cor-
respond to the queries given in section 3.7. It should be emphasized that the measurements
examined here only apply to this one set of queries, and may not be representative of queries
in general. On the other hand, these queries are somewhat complex, involving <where>,
<when>, <start>, and <at clause>s, as well as several (tuple variable>s and expressions. Most
queries will probably be less complex.

Several measurements were taken for each version. One was the average number of node
fires resulting from each input tuple, where a fire is defined to be the invocation of an access
or operator node. Note that this value is normally greater than two, since each input tuple
causes at least one access node and one initial operator node to fire. This value is related to
the average depth attained by an input tuple in the network, but is not equivalent to this value,
since an input tuple van trigger the generation of several new tuples, especially in the car-
tesian product node.

The second measurement taken is the average execution time per node fire. This time has
two components: the invocation time for a node, which is independent of the node type, and
the execution time of a node once it has been invoked, which is dependent of the type of the
node. Given this measurement, it is easy to calculate the number of input tuples that can be
absorbed each second, indicating the execution speed of the network.

Cartesian products are expensive, so the number of output tuples they produce, per tuple
flowing into the node, was measured. Since several of the optimizations reflect this cost, we
would expect the optimized version to show significant improvement in this regard.

Finally, the number of output tuples per input tuple was determined. This value is invariant
across the three versions (given that they implement the same queries) and is more highly
dependent on the particular queries (and the input data) than the other measurements. All

.°.. - * ..
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trials with actual input tuples resulted In few output tuples, since one prOCM sndWld to get
and stay ahead of the other process Hence, an artificial input stream of 50 tuples wi chosn
to produce interesting results. For this stream, there were 32 output tuple Woduced. The

other measurements using the test input tuples are quite pessimistic for this updato netwok,
since each input tuple resulting in an output tuple causes more node fires, more intermedila

tuples to be produced, and generally more computation than an Input tuple elimimted during
the processing.

The execution -times were all measured using the ptime system function, which returns two
values, the cumulative runtime of the process and the cumulative runtime used by the gar-
bage collector. Both times are in jiffies, that is, (1/60) seconds, or 16.67 milliseconds. The
experiments were replicated many times to reduce this sampling artifact. Runtime measure-
ments indicate performance on a dedicated Vex 11/780, and are therefore relatively Invariant

to current system load. Measurements involving time will be presented in the format of a (b),
where a includes the overhead of garbage collection, and b assumes that garbage collection

is instantaneous. Both figures are given to emphasize one artifact resulting from the use of
Lisp as the implementation language.

The execution times concern only the update network, and thus only a portion of the actual

performance of the monitor. In particular, the remote accountant (see section 8.5), also
executing on the Vax, will reduce the effective tuple rate. Informal arguments in section
8.8 indicate that the components of the monitor have comparable efficiencies.

F.1. The Unoptimized Version

The code for constructing the update network as generated by the compiler is shown in

Figure F.1, and the update network Itself is shown in Figures F-2 and F-3. It contains four
access nodes and 24 operator nodes, of seven types. The following measurements were
taken:

e 19.9 node fires per input tuple;

* 17.5 (7.6) milliseconds per node fire;

* 60% of this time spent in garbage collection;

* 2.8 output tuples generated per input tuple of a cartesian product;

* * . 2.9 (6.6) input tuples per second processed; and

.77% of these tuples later eliminated.

S.- -o *
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Processing statemet I1...
Processing $tateameat a ...
Processing statement 3 ...
((croateaccess ITERATION access-00499)]
((CreateOP eventtoporiod etop-GOSOC (1 4))]
[(link access-004g9 @top-GOSOG left)]
((createaccess ITERATION access-00497)3
((createop eveattoperiod etop-00496 (1 4))]
((link access-00497 *top-00496 let t)3
((createop cartesian cartesian-00501 (0 4))3
((link etop-00500 cartesian-00601 left)]
((link etop-00406 cartesian-00601 right)]
((createop selection selection-00502 ((lambda (S3 SO) (greaterp $3 (+ S6 1))) (3

8)))
((link cartesian-00601 solection-00502 left)]
((createop selection selection-00504 ((lambda ($5) (equal S6 41653)) (6)))]
((link selection-00502 selection-00504 left)]
((createop selection selection-0058 ((lambda ($I) (equal $1 41821)) (1)))]
((link selection-00504 selection-00506 left)]
((createop applyop applyop-0GOOS (10 (lambda (SO SO) (stopfunc (NEXTfunc SO SO)))
(0 8)))

[(link selection-00506 applyop-00508 left)]
[(createop epplyop applyop-00510 (11 (lambda ($4 $O) (startfunc (MEXTfunc $4 S9)))
(4 9))))

[(link applyop-00508 applyop-00510 left)]
[(createop applyop applyop-00512 (12 (lambda ($3 S6) (-$8 $3)) (3 8)))]
[(link applyop-00510 applyop-00512 left)]
[(createop projection projection-00514 ((10 11 12)))]
[(link applyop-00512 projection-00514 left)]
Processing statement 4...
Processing statement 8...
[(createop aggrop opAVGC-00518 (opAVGC -1 -1 -1 3 0 1))]
[(link projection-00514 opAVGC-00818 left)]
[(createop applyop applyop-00519 (4 (lambda ($3) (productti $3 100)) (3)))3
[(link opAVGC-00518 applyop-00519 left)]
[(createop projection projection-00521 ((0 1 4)))]
[(link applyop-00519 projection-00521 left)]
Processing statement 6...
[(createaccess ITERATION access-00525)3
[(createop eventtoperiod etop-00528 (1 4))]
[(link access-00526 etop-00526 left)]
[(createaccess ITERATTN access-00523)J
[(createop eventtov.iod etop-00524 (1 4))]

7. [(link access-00523 etop-00524 left)]
[(createop cartesian cartesian-00527 (0 4))]

[(lnk to-00526 cartesian-00527 left)][(link stop -00524 cartesian-00527 right)]
[(createop selection selection-00528 ((lambda ($3 $8) (equal $8 $3)) (3.8)))]
[(link cartesian-00527 selectlon-00528 left)]
[(createop selection selection-00530 ((lambda ($I) (equal $1 41653)) (1)))]
[(link selectlon-00528 selection-00530 left)]
[(createop selection selection-00532 ((lambda ($5) (equal $6 41521)) (6)))]
[(link selection-00630 selection-00532 left)]
[(createop selection selection-00534 ((lambda (S0 $5) (followpred $5 S0)) (0 5))))
[(link selection-00532 selection-00834 left)]
[(createop projection projection-00536 ((0)))]
[(link selection-00534 projection-00536 left)]
[(createop switchdisposltion switchdisposition-00537)]
[(link projection-00535 switchdisposition-00537 left)]
Processing statement 7 ...
[(createop display display-00538 (CATCH (START)))]
[(link switchdisposition-00537 display-00538)]

* [(createop display display-00539 (OVER (START STOP PERCENT)))]
[(link projection-00521 display-00539)]

Figure F-i: Code for the Unoptimized Update Network as Generated by the TOWe Compiler
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Figure F-2: The Unoptimized Update Network Generated by the TOuW Compiler, Part 1

The first measurement indicates that most of the tuples move through several nodes before
* they are eliminated; although the selection nodes are right after the cartesian product nodes,
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they still are at least four nodes away from the input nodes. The number of nodes generated
i~o,:.by the cartesian product nodes is rather high; this value, coupled with the fact that less than a
:',-'.fourth make it through the rest of the network, implies that the cartesian products are con-

--. tributing to the low efficiency of the network. Finally, the execution time per node fire Is
excessive, although the performance data does not discern between the node invocation
component and the node execution component of this time.

.. F.2. The Optimized Version

igThe following op timizons were performe neatd to produce the optimized version

• . shown in Figure F-4:

1. The selection nodes were moved to just after the acces The, thereby reducing
fouthe number of tuplesh flowing into the cartesian product nodes.

t i2. The Diff domain of the intermediate relation AOverB was eliminated through flow

ecseanalysis of the domains.

Te3. A more efficient evintereiod algorithm was used, because only one process

value was possible for the process domain.

S.. *- . . .* ...- ~.-.- •' - .. . - " "'" . -- - -- - - - - - - - - ---.
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4. A more efficient cartesian product could be used, because the inputs are now

ordered by their start and stop times.

These optimizations are discussed in more detail in section 7.2.

The resulting update network contains two access nodes and 18 operator nodes, and has
the following characteristics:

* 9.2 node fires per input tuple;

* 7.2 (4.7) milliseconds per node fire;

* 35% of this time was spent in garbage collection;

* 15 (23) input tuples per second;

* 0.9 output tuples generated per input tuple of the cartesian product;

* 28% of these tuples later eliminated.

All of these values were dramatically improved over the unoptimized version. The transfer
of the selection nodes resulted in a 50% reduction in the number of node fires per input tuple.
The cartesian product effectively eliminated 10% of its input tuples, rather than outputting

Smore tuples than were input (the usual case), due to the requirement that the periods
* -. represented by the tuples overlap in order for an output tuple to be generated. The survival

rate of those tuples that were output was three times that of the unoptimized version. The 40%
reduction in execution time of a node fire may be attributed to two factors: the more efficient
eventtoperiod and cartesianproduct algorithms and the reduced storage requirements of the
cartesianproduct nodes as a result of fewer input tuples.

F.3. The Compiled Version

The optimizations listed in the previous section were effective at reducing the deleterious

effects of the cartesian products. However, the execution time of a node fire is still a sig-

nificant problem. Even if optimizations could lower the number of node fires per input tuple to
1, the processing rate would still be an unsatisfactory 140 input tuples per second.

.. As mentioned above, the node fire time has two components, the invocation time for a node
and the execution time of a node once it has been invoked. Measurements were taken of an
operator node that did nothing but return its input tuple, with an execution time (the second

,' * component) of a few microseconds. The average time for a node fire was 2.4 milliseconds.
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Figure F-4: The Hand -Optimized Update Network

Hence, the invocation time accounts for approximately a third, and the execution time, two
thirds, of the time fire time for a node.
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The following factors ail contributed to the low eff iciency.

9 Data structures were implemented as hunks (arrays of Lisp pointers) which are
expensive to allocate and to garbage collect.

e The queuing in breadth-first scheduling involved a lot of copying, requiring much
allocation and deallocation.

* Operator nodes were general, and thus had to check data structures extensively
to determine the specific operations to perform.

Compilation strategies were developed to eliminate these inefficiencies. The update net-
work compiler translates a sequence of create and link operations (the update network) into a

* collection of Lisp functions, which are then compiled by the Lisp compiler into Vax assembly
* language. Conceptually, an entire update network is converted into a specialized operator

node (see Figure F-5). In fact, implementing queries in this manner allows portions of the
* update network to be interpreted and other portions to be compiled.

* An update network compiler was designed but not implemented. The techniques developed
for such a compiler were tested by hand-compiling the optimized version of the previous
section, and then measuring the performance of the compiled version. The following op-
timizations were made during the hand compilation:

1. No hunks were used; data structures were implemented as list structures or as
collections of local variables.

2. Each node was implemented as a Lisp function, allowing a node to be fired by
* simply invoking the function.

3. Depth-first scheduling was used, eliminating a ready queue of nodes.

4. The code for each node was optimized to perform only the necessary calcula-
tions.[ 5. The functions that were only called once were expanded inline.

6. Nodes were invoked using the Lisp apply function, so that the arguments of the
invoked function consist of the domains of the tuple, rather than the tuple itself.
This technique, used in the Ops4 implementation [Forgy 79], eliminates the over-
head of unpacking the tuple to access its domains.
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Figure F-5: The Hand-Compiled Update Network

7. The temporary storage for a node was optimized and was kept in global variables.

The performance of the hand-compiled query was impressive:

* * 1 node fire per input tuple;

* 1.6 (1.5) milliseconds per node fire;

< ( 10% of this time was spent in garbage collection;

* 600 (660) input tuples per second;

* 0.9 output tuples generated per input tuple of the cartesian product; and

" 28% of these tuples were later eliminated.

The execution time for the node fire is one-fourth that of the optimized version (while
performing the computation of the entire network!), mirroring the high overhead of breadth-

* . first scheduling in the latter version. The elimination of hunks and the careful use of tem-
porary variables greatly reduced the overhead for garbage collection.

The low garbage collection overhead also indicates that the compiled version is not utiliz-
ing Lisp fully. Indeed, the primary reason for compiling the update network is to avoid the
convenient features of the language which are expensive in execution time. The target lan-
guage could have been C instead of Lisp. In fact, it could have been assembly language
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without too much additional work, since many high level language feate (e.g., structure

definitions and type checking) would not be utilized anyway.

F.4. Summary

This appendix has detailed the application of a host of techniques for increasing the ef-
ficiency of update networks. These techniques, applied in concert, result in a dramatic
speedup factor of over 200 for a particular set of queries, without altering the semantics of the
network. A common attribute of these techniques is that they exploit knowledge concerning
the update network. For example,

e Cartesian products are expensive, so move selections to below them, if possible.

, More efficient operator nodes may be used given particular tuple orders.

- If domains are not used, they need not be computed.

* Depth-first scheduling does not require a ready queue, so it can be eliminated.

' If an operator node is referenced only once in an update network, it can be

compiled inline.

These specific techniques are instances of one of the steps in the iterative process outline in

section 8.7:

4. Apply all the available information to a particular instance of the problem in

order to efficiently perform the desired action, trading generality for efficiency.
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